全球暖化的物理:金星證實,都是二氧化碳惹的禍

我懷疑有些人不喜歡「自然淘汰沒有先見之明」的觀點。事實上,這個過程本身確是不知道將來往哪裡去。 正是「環境」提供了方向;從長遠來看,在很大程度上其影響是不可預測的。

──弗朗西斯・克里克,Francis Crick (1916-2004) ,1962年諾貝爾醫學獎──發現DNA雙螺旋結構

在「人體太複雜了:為何有關人體健康的研究總是充滿爭論?」一文裡(泛科學,2015/11/11),筆者談到了在研究與人體有關的問題上,因爲無法隔離各種可能的「因素」來探討直接的因果關係,因此有關人體健康的研究爭論將永無止境。

地球氣象的複雜性雖然可能比人體簡單些,但也碰到同樣的無法控制之隔離因素的問題,更糟的是世界人口有 70 多億,生物學家與醫學家可以使用統計法來研究,但地球只有一個,因此氣象學家所能使用的研究工具大受限制!故地球是否正在暖化,也像「基因改造物種(GMO)是否對人體有害」一樣,呈現兩極化的爭論。

地球是否正在暖化,目前呈現兩極化的爭論。圖/pixabay

一個極端謂全球暖化是「庸人自擾,根本沒有這種現象。」他們認為地球在過去的 70 萬年中經歷了溫暖和寒冷的時期,以百年尺度來看, 我們或許正處於溫暖時期的中間,但以十萬年尺度來看,我們事實上是正走向另一個冰河時代。理論物理及數學家 Freeman Dyson 謂:「全球變暖是世界面臨的最重要問題的想法完全是胡說八道,並且造成了很大的傷害。」

另外一個極端則認為「氣象變化已經到了極端,我們如果不再採取行動,世界末日就在眼前。」去年 11 月 23 日,包括 300 名頂尖科學家在內的第四次全國(美國)氣候評估(Fourth National Climate Assessment)謂:「美國已經經歷了氣候變化帶來的嚴重和代價高昂的影響。」在 10 月份發布的另一份聯合國報告中,科學家們則謂:「各國需要極端的努力,才能將全球變暖限制在 1.5 攝氏度內——而且我們大約只有 12 年的時間。」

都是二氧化碳惹的禍

儘管爭論不斷,但 90% 以上的科學家均認為全球是正在暖化,雖然其中有些許認為原因不明,或現有的資料尚不足以支持是因「人類活動」造成的,但大多數都同意全球暖化的罪魁禍首是二氧化碳

二氧化碳在空氣中佔不到千分之一,怎麼竟成為全球暖化的罪魁禍首呢?在探討其原因之前,筆者必須在這裡指出,常被用來「證明」全球暖化之「90%以上的科學家均認為……」並不代表什麼!

誠如美國名作家、編劇、電影導演、和製片人(特別是在科幻小說、驚悚片、和醫學小說類型中的作品)Michael Crichton(1942–2008,哈佛醫學院高材生)所言:「科學工作與共識無關。 共識是政治事務; 相反地,科學只需要一名正確的調查員。…歷史上最偉大的科學家之所以偉大,正是因為他們打破了共識。…沒有共識科學這樣的東西。 如果達成共識,那就不是科學。 如果是科學,那就不是共識。」

科學工作與共識無關。圖/pixabay

不幸的是,如前面所提:因為複雜性及只有一個地球,這一名「正確的調查員」是永遠不會出現的。因此自圓其說的各種研究報告將繼續不斷地出現!如筆者在一些文章內所提的:讀者不能盲目地相信,必須用自己的判斷力來看所有的報告和研究!另一個讀者需要注意的是:作者的立場常有意或無意地影響了其結論!(例如今年2月底,美國白宮計劃創建由一群不認同「石化燃料的持續燃燒正在傷害地球」的特選聯邦科學家組成的特設小組,來重新評估政府對氣候科學的分析──不用等報告出爐,我們就應該已經知道結論了!)

筆者的立場在「人體太複雜了:為何有關人體健康的研究總是充滿爭論?」一文裡已表示得非常地清楚:「你說整天將手機放在耳邊對大腦沒有影響?怎麼可能呢!只是這環境改變不夠巨大,因此到底有那些人能夠成為適者而生存下來,那可能是幾百年後才可能知道的!」人類大量地製造出二氧化碳,怎麼可能不影響自然界的平衡呢?只是這影響將不再是「有些人」而已,而是整個人類。然而人類或其他動植物是否能成為適者,那就要看破壞及進化的相對速度了!

人類大量地製造出二氧化碳,怎麼可能不影響自然界的平衡呢?只是這影響究竟為何?圖/pixabay

黑體輻射與地球表面平均溫度

因為太陽是驅動我們氣候系統的基本能源,首先讓我們來看看經過 45 億年的太陽照射,「理想」的地球溫度應該是多少。太陽的直徑約為 140 萬公里,表面溫度為絕對溫度 6000°K, 所發射出來的能量(電磁波)分布如(圖一)所示。

(圖一):太空中之太陽能分布情形。因空氣之關係,太陽能抵達地面之分布大不相同。

從(圖一)可以看到:五官中最重要的器官「眼睛」,所能感應到的電磁波範圍,正是太陽能分布中最強的部份(占 47%),我們因之稱此範圍為可見光,其波長大約在 390∼750 奈米(10-9 公尺)之間!你說這是巧合還是演化的必然結果?事實上不僅人類及大部份動物如此,大部份植物也是利用可見光來進行其生存與繁盛所必須之光合作用的!

早在十九世紀末期,物理學家便致力於分析因溫度而放射的輻射能光譜(即分析某頻率範圍內有多少輻射能)。他們發現輻射能光譜僅與放射物質的溫度有關,卻幾乎與其組成的物質無關1。近代物理中的量子力學,便是為了解釋實驗光譜而興起的。事實上波茲曼(L. Boltzmann)早在1884年,便由熱力學導出溫度為T之物質的輻射總能量為:

ET(單位時間單位面積之總輻射能)=σT4

公式中之 σ 為史蒂芬—波茲曼常數(Stefan-Boltzmann constant),T為絕對溫度

將太陽的表面溫度代入上面公式,可以算出太陽一天所放射出的能量,足供人類一年所須,可是還好只有 21 億分之一的能量抵達地球2。當然,地球本身也會依上面的公式輻射。如果我們要求地球所吸收的能量等於它所輻射的能量,我們可以計算出地球的穩定溫度為 279°K(6°C)。信不信由你,這實際上竟然非常接近 1880 年時的地球表面平均溫度 287°K !3

經過 45 億年,地球溫度達到一個平衡值,似乎是很好的假設。圖/pixabay

經過 45 億年,地球溫度達到一個平衡值,似乎是很好的假設。因此我們不免要問:為什麼不是完全吻合呢?一個可能的解釋是:「因為大氣的關係,地球並不是一個很理想的黑體,大氣不但反射部分的太陽能,也吸收了地球往外太空輻射的部分能量。」但科學家不但未在大氣的各個層面看到更溫暖的氣溫,相反地,他們觀察到高層大氣的冷卻,以及對流層表面和下部的升溫——顯然是因為「溫室效應」在低層大氣中捕獲較多熱量之故。

什麼是「溫室效應」呢?相信許多讀者不但聽過,而且可能都親身體驗過,那就是在門窗緊閉之車子內的溫度可以比外面的溫度高出甚多4;因此在比較冷的地方,在玻璃屋內可以種一些熱帶植物。要了解玻璃屋內為什麼可以保持比較高的溫度,我們在這裡必須先溫習下電磁波(輻射能)與分子(原子)的作用。

溫室效應的物理

電磁波是一種電、磁場的振動,因此要與他作用,物體必須帶電。分子是由帶正電之原子核以及帶負電的電子組成的,因此一定可以與電磁波作用。20世紀量子物理的一大發現,就是分子本身的內在「振動」頻率,必須與電磁波頻率相同才能將它吸收。分子本身的內在「振動」大約可以分成三種:

  1. 電子在軌道中的跳動,其頻率大約都在可見光及紫外線附近;
  2. 分子的振動,其頻率大約都在紅外線附近;
  3. 分子的轉動,其頻率大約都在微波附近。

如果頻率不同,不能引起共振(吸收),那麼電磁波裡的電場就只能帶動分子內之電子,依它的頻率振動,往四面八方放出頻率相同的電磁波,造成散射(scattering)現象(如天空之所以是藍色的原因)。不管是吸收或散射,如果電磁波訊與分子繼續作用,其原來之能量最後都將被轉換改成熱能(分子之無規律運動——詳見延伸閱讀「熱力學與能源利用」)!

前面提過太陽的輻射主要是可見光,而玻璃是透明的,意即除了少數可見光被散射掉外,其他都毫無阻擋地通過,射落在地面及植物上(圖二),最後大都被吸收經由分子之間的作用改變成熱能,提高地面及植物的溫度。

因為它們的溫度比太陽低得多(室溫,大約只有 300°K 而已),故其頻率分佈與(圖一)完全不同,不但整個能量(分佈圖下的面積)少多了,其主要的輻射已不再是可見光,而是集中在紅外線區域。

電磁波的波譜與性質。圖/wikimedia

這些能量在往外輻射時,卻不幸碰到了「溫室氣體」及玻璃。這些氣體雖然不能吸收可見光,但是它們的的振動頻率正是集中在紅外區附近,因此這些輻射將大部分被吸收,使分子的振動變快。透過分子間的碰撞,這些快速的分子振動最後終被轉換成分子的動能──熱能,提高了室內空氣的溫度,造成所謂的「溫室效應」。

溫室氣體:二氧化碳與水蒸氣

地球雖然沒有玻璃罩,但是它卻被一層大氣包圍著。大氣的主要成分是氧氣(21%)、氮氣(78%)、及氬(1%),它們都是由同樣的原子組成的(氬是單一原子),因此振動不可能產生具正、負電端電偶,故不能與電磁波作用吸收紅外線。剩下的 1% 則主要是水及二氧化碳等微量氣體。水分子大都以水蒸氣形式存在,其濃度因地點和時間而異,大約在 0-4%之間變化:在寒冷乾燥的地區,水蒸氣通常佔不到大氣的 1%;而在潮濕的熱帶地區,水蒸氣幾乎佔大氣的4%。

二氧化碳分子(O=C=O)雖然因為對稱的關係不具電偶,但它的四個振動態中有三個(例如O===C=O)會破壞對稱而產生電偶,吸收同一頻率的電磁波。水分子本來就具電偶,因此與二氧化碳一樣,可以吸收從地球表面放出來的黑體輻射,造成溫室效應使地球變暖,合稱為「溫室氣體」(greenhouse gas)。

水分子與二氧化碳一樣,可以吸收從地球表面放出來的黑體輻射,造成溫室效應使地球變暖,合稱為「溫室氣體」圖/pixabay

水在大氣中的份量比二氧化碳多,因此水應是改變地球輻射平衡的最重要的分子。但大氣中水蒸氣的濃度主要取決於海洋的蒸發(和凝結),而海洋是如此巨大,人類對它的直接影響有限,不能過多地改變它,因此只能將地球變暖全部怪罪到二氧化碳,及其他一些更少的氣體如甲烷、氮化氧等。

金星提供的間接證據

我們雖然不能在地球上進行任何實驗,來直接證明現在地球變暖是因為二氧化碳的關係,但被稱為地球姐妹之金星,似乎是提供了很好的一個間接證據。

金星的密度、體積、組成均與地球差不多,顯然是因為溫室效應的關係表面溫度高達 740°K!圖/pixabay

金星的密度、體積、組成均與地球差不多,但與太陽的距離為地球的 72%。如果我們也要求它所吸收的能量等於它所輻射的能量,我們可以很容易地計算出金星的穩定表面溫度應為 538°K;5 金星的實際表面溫度不但相當均勻,且高達 740°K!其原因顯然是因為溫室效應的關係 :金星的大氣幾乎完全是由二氧化碳組成的(僅含有微量的氮和硫酸)。而比它更近太陽的水星,因為沒有大氣調節溫度,溫度變化非常地大(103°K 到 700°K),最高的溫度也只有 700°K 而已。

讀完上面的論點,讀者覺得將「地球暖化歸咎於二氧化碳」有沒有道理?筆者在親朋好友間的一句「名言」是「飯吃過量對身體也是有害」,因此不需要任何物理就已經覺得很有道理了。人類生活水平的全面提高,無可否認地是因為大量使用能源的關係;大量燃燒石化物,無可否認地將產生大量的二氧化碳,破壞了原本之地球上的二氧化碳平衡6。此一平衡的破壞一定會有影響,如果不是暖化地球,那是什麼呢?筆者去年 12 月中旬回到台灣,帶了一些冬天的衣服,卻發現台灣天高氣爽,好像春天早已光臨寶島!

比利時科學家 Christian de Duve 曾言:「我們(人類)成功的代價是自然資源枯竭、導致能源危機、氣候變化、污染、和我們棲息地的破壞。 如果你耗盡了自然資源,那麼你的孩子就沒有什麼了。 如果我們繼續朝著同一個方向前進,人類就會走向一些可怕的考驗——如果不是滅絕的話。」

或許自然淘汰本身確是不知道要將我們往哪裡推,但過去幾次的地球氣候巨變,如:二疊紀(Permian)、三疊紀(Triassic)、或甚至寒武紀(Cambrian)中期,幾乎總是對生命造成高度破壞性,導致大規模物種滅絕。

人定勝天或者作繭自縛?且待下回分解──有嗎?

註解:

  1. 如果該物質為「黑體」,則輻射能光譜便完全與物質無關。黑體是一種理想化的物理體,無論頻率或入射角如何,都能吸收所有入射的電磁輻射。許多普通物體發射的輻射可以近似為黑體輻射。
  2. 利用簡單的幾何面積計算即可:πr2/4πR2( r為地球半徑,R為地球與太陽的距離)。
  3. 事實上筆者第一次看到這個「巧合」時,是有點「震驚」,想一想地球的表面溫度變化從184°K到331°K,並不是在一個平衡狀態,而總輻射能與絕對溫度的4次方成正比(用線性平均溫度算出來的總放射能將比實際的少)。
  4. 美國每年平均大約有 37 位小孩因為父母親忘了他們還留在車後座位而被熱死。
  5. 約等於(地球穩定表面溫度 287°K)× (1/0.72)2
  6. 與此同時,人類又大量地砍採可以幫助消化、平衡二氧化碳的樹木與森林!

延伸閱讀:

  1. 賴昭正:「我愛科學」,華騰文化有限公司2017年12月出版。該書收集筆者自1970年元月至2017年8月在科學月刊及少數其他雜誌所發表之文章編輯而成。本文章所涉及到之「熱力學與能源利用」、黑體輻射、史蒂芬—波茲曼定律、分子的振動、分子與電磁波的作用等均在裡面。
  2. 黑體輻射的研究如何導致量子力學的發展,請參考賴昭正:「量子的故事」,第二版,2005年,凡異出版社。

泛知識節倒數一周!3/30、3/31隆重登場!

宇宙間有好多好多的知識,怎麼學都讓人不滿足。而學習也有好多好多方式,才不只是背誦跟考試。

讓我們在泛知識節一起探索學習的 N 種方式,找回學習的樂趣、求知的純粹,讓天下沒有難學的知識!

想知道學習還有什麼可能?就來知識節吧:http://bit.ly/2FgTb83

想了解更多可以去官網看看喔:http://bit.ly/2FhrsUF


泛科學院精選線上課程:爸媽需要搞懂的 14 堂大腦教養課(預購)

老是覺得小孩不乖?各位爸媽別煩惱,一起跟著資深心理師學習「教養心理學」,了解孩子的心理狀態和發展需求,讓親子之間溝通更順暢、關係更親密!

The post 全球暖化的物理:金星證實,都是二氧化碳惹的禍 appeared first on PanSci 泛科學.

除了葉黃素,想保養眼睛還能吃什麼?常見護眼營養成分盤點

這,可能是你今天一整天的生活:

剛睡醒,燈都還沒開,賴在床上先刷一輪臉書;去公司的路上,拿著小小的螢幕,搖搖晃晃地追著劇;上班時間,長時間近距離地看著大大小小,不只一個的螢幕;下班後又繼續看電影或是回家看電視。一整天下來,你的眼睛從來沒有休息過,不斷地接受著各種閃動的畫面和強光照射。

圖/pixabay

這也難怪有很多人從小到大,桌上放滿了各種強調保養眼睛的保養品。但要怎麼吃才有真的對眼睛有用呢?以下簡介幾種相當常見的護眼成分。

蝦紅素 (Astaxanthin)

蝦紅素又稱為蝦青素變胞藻黃素,是類胡蘿蔔素這個大家族的一種。蝦紅素正是在許多藻類、龍蝦、鮭魚等海鮮中,形成紅色或粉紅色的色素。蝦紅素是目前最受注目的抗氧化劑,同時具有親水端與親油端,所以比起維生素C、維生素E、花青素等抗氧化劑,能同時作用在細胞膜內外,消除更多自由基的傷害。

也因為高度抗氧化的能力,科學家對於蝦紅素在減緩眼睛、心血管和皮膚的老化上都寄予厚望。目前認為,蝦紅素的確可以有效減緩眼睛疲勞,改善睫狀肌調節的能力。每天服用 4-6 mg 蝦紅素,持續 2 到 4 周,就能明顯改善眼睛的疲勞感、保護黃斑部、增進眼睛聚焦的能力。

目前蝦紅素含量最高的雨生紅球藻,每 100 克大約含有 6000 毫克的蝦紅素,已經有大量研究測試商業化生產的可能性。

花青素 (Anthocyanins)

花青素和它的前驅物「原花青素」 (Proanthocyanins) ,也是近年來非常熱門的抗氧化物。花青素是一種水溶性、普遍存在於植物中的色素,像是葡萄、藍莓、蔓越莓、洛神花中都含有大量花青素。

由於目前主流科學認為自由基與老化有關,與蝦紅素類似,花青素在化學性質上,也是很強的抗氧化劑;對於抗發炎、保護眼球組織、保護眼睛微血管,改善區域血液循環都有所幫助。

花青素在人體內也用於合成視紫質。視紫質 (Rhodopsin) 的功用是用於提升眼睛對光的敏感度用,讓人適應較為黑暗的區域。如果視紫質不足,就容易有夜盲或弱視的現象。因此補充花青素,可以提高眼睛在暗處的辨識力。

β胡蘿蔔素與維生素A

β胡蘿蔔素在體內能夠轉變成維生素A,在許多水果、黃綠色蔬菜、肉蛋肝臟類食物中都有豐富含量。兩者都是脂溶性的營養素,一樣需要藉由脂肪輔助吸收,經過腸道吸收後,儲存在肝臟中,必要時再送到特定的位置,進行下一步的合成。

如果長期缺乏維生素A,可能會導致視力障礙、淚液分泌不足,角膜和結膜軟化等症狀。

也由於維生素A是脂溶性維生素,過度攝取,則容易堆積在體內,造成維他命A中毒,導致視力模糊、噁心頭痛等。孕婦如果在懷孕前期,補充過多維生素A也會導致胎兒的發育構造出現畸形,會增加小朋友發生唇顎裂的機率。

葉黃素 (Lutein)

目前研究認為,葉黃素除了能夠抗氧化之外,還能降低視網膜黃斑病變的機率,降低藍光對視網膜的傷害。市售葉黃素因為製作過程的不同,分為游離型 (free lutein) 與葉黃素酯 (lutein ester) 兩種型態。游離型葉黃素吸收過程中減損的比率較低,葉黃素酯因分子較大,消化的過程減損較多。食物中多數都是游離型葉黃素,目前從花中提煉的多數是葉黃素酯

2006年美國眼科協會曾針對4000名以上,50-85歲的參與者進行名為 AREDS 2 的實驗計畫,提出有效攝取葉黃素的配方為:

  • 游離態葉黃素 10 mg+玉米黃素 2 mg+銅 2 mg+Omega-3 1000 mg + 維他命C 500 mg+維他命E 400 IU+鋅 25 mg。

雖然有研究認為,AREDS 2 結果並沒有顯著意義,但後來卻有許多商業產品,直接引用此配方。這群實驗對象和實驗結果,是否能有效代表較年輕的族群和保護眼睛的目的,目前還有許多不同意見。

營養補充品,不是越吃越多越有效

圖/pixabay

比起過去以防止疾病發生為出發點的「每日飲食建議量」 (RDA, Recommended Dietary Allowance) ,現在的營養學界和醫學界,都更重視「每日營養最理想攝取量」 (ODA, Optimum Daily Allowance) 的概念,除了預防疾病之外,也希望能進一步維持健康、降低氧化壓力等。

以上介紹的幾種營養素,多為脂溶性,因此也有許多廠商添加在富含 DHA 的魚油中,促進吸收。

實務上,要針對每個人去設定合理攝取的營養素含量,非常困難。市面上的營養品也會因為原料、劑型、製作方式與共同添加物等因素,有不同的效果。

除非是極為特殊的飲食方式,一般而言,在做好防曬和避免陽光直射(戴太陽眼鏡)的前提下,適度增加戶外活動、減少近距離長時間聚焦小螢幕以及均衡飲食,是比選擇攝取營養添加物,維持好視力更加重要的習慣。

參考文獻:

  1. Davinelli, S., Nielsen, M., & Scapagnini, G. (2018). Astaxanthin in skin health, repair, and disease: A comprehensive review. Nutrients, 10(4), 522.
  2. Toden, S., Ravindranathan, P., Gu, J., Cardenas, J., Yuchang, M., & Goel, A. (2018). Oligomeric proanthocyanidins (OPCs) target cancer stem-like cells and suppress tumor organoid formation in colorectal cancer. Scientific reports8(1), 3335.
  3. 衛生福利部國民健康署——國人膳食營養素參考攝取量

泛知識節倒數一周!3/30、3/31隆重登場!

宇宙間有好多好多的知識,怎麼學都讓人不滿足。而學習也有好多好多方式,才不只是背誦跟考試。

讓我們在泛知識節一起探索學習的 N 種方式,找回學習的樂趣、求知的純粹,讓天下沒有難學的知識!

想知道學習還有什麼可能?就來知識節吧:http://bit.ly/2FgTb83

想了解更多可以去官網看看喔:http://bit.ly/2FhrsUF


泛科學院精選線上課程:爸媽需要搞懂的 14 堂大腦教養課(預購)

老是覺得小孩不乖?各位爸媽別煩惱,一起跟著資深心理師學習「教養心理學」,了解孩子的心理狀態和發展需求,讓親子之間溝通更順暢、關係更親密!

The post 除了葉黃素,想保養眼睛還能吃什麼?常見護眼營養成分盤點 appeared first on PanSci 泛科學.

運用高中物理,你也能做出美國設計的AS-1 地震儀

  • 文/林欽仁 (中央研究院地球科學研究所 研究助技師)

地震儀是地震學家了解地震波傳遞過程所仰賴的工具,而地震儀的發明也帶動了地震科學的發展。

為推廣地震科學教育,讓大眾了解地震儀器的原理,美國地震學研究聯合會 (Incorporated Research Institutions for Seismology, IRIS) 提出 AS-1 地震儀的機構設計,並撰寫地震資料軟體 Amaseis,期許大眾透過 DIY 實作了解地震儀器的運作,筆者的工作環境再加上身為 TEC 的一員,認為此地震儀相當符合教育推廣的需求,遂與同仁打造出中央研究院地球科學研究所版本的 AS-1,提供給高中及大學作為地科課程的教材。

質量塊、彈簧,再加點阻尼,於是地震儀就誕生了

首先來談談「如何觀測地震」,如果要測量地震造成的震動,我們需要一個作為相對於地面的參考點觀測,最理想的方式便是從空中來觀測地面的起伏變化。然而實務上此想法不容易達成,於是科學家想到另一個方法:利用質量塊、彈簧阻尼製作出地震儀,這也是組成地震儀的三要素。

這裡直接以 AS-1 地震儀的結構設計為例,詳述地震儀的運作原理。

地震儀利用彈簧拉起質量塊(也就是圖中的磁鐵),當地面震動的頻率大於彈簧頻率時,透過彈簧所懸吊的磁鐵會近似於靜止不動,這是利用牛頓運動定律中的「慣性」。因此地面的震動,也就是圖中的線圈,便與磁鐵有了相對運動,如此一來線圈的兩端產生了與地面震動速度成正比的電壓,運用的便是法拉第感應電壓原理

到此為止地震儀已經有了觀測地面震動的能力,但其系統響應[註1]並非理想,因為當地面以低於或接近於彈簧頻率來震動時,懸掛於彈簧上的磁鐵便也跟著地面晃動,在缺乏阻尼(可想像成是如摩擦力的阻力)的作用下,彈簧本身將產生自然振盪,也就是當地震的搖晃減小時,彈簧仍不住的搖晃,而這些非地震本身的運動,仍會反映於磁鐵線圈所產生的電壓變化,其紀錄的振幅甚至大於實際地面的震動訊號,影響了我們對地表震動的觀測。儘管彈簧造成的振動訊號可以透過儀器響應修正的方式來移除,卻也對分析地震資料的人來說造成不必要的困擾,為了克服此問題,地震儀需要加入阻尼的機制[註2]。

中央研究院地球科學研究所AS-1地震儀。圖/臺灣地震科學中心提供

有點晃又不能太晃,合適的阻尼如何設計?

AS-1 阻尼系統是由銅片及磁鐵組成,銅是良好的導電材料,但銅本身卻不會被磁鐵直接吸引。因此當銅片進、出磁鐵的磁場時,磁通量的變化會在銅片上產生感應電流,感應電流產生感應磁場,與磁鐵的磁場相互作用下可減緩銅片的運動速度,也就增加了地震儀的阻尼,這便是應用冷次定律來實現阻尼的結構。

地震儀在質量塊(磁鐵)、彈簧及阻尼三個元件的協調作用下,可達成觀測地面震動的工作。其實地震儀的運作原理與我們平常搭乘車子的懸吊系統類似,避震器之彈簧的功能在於避免路面的坑洞產生的不適,而避震器之阻尼在於減緩彈簧的自然振動,避免過多的振動影響汽車的操縱性。

其實地震儀的運作原理與車子的避震器有些相似。圖/pixabay

目前的 AS-1 地震儀僅能觀測地面垂直向的運動,水平向的觀測需仰賴不同的懸吊設計,但原理大致接近。此外,由於磁鐵質量塊的擺動為圓周運動,當擺動較大時其擺角將不可視為與地面垂直運動維持線性關係(d=l*sin(θ)≠l*θ; d為磁鐵圓周運動位移軌跡,l為旋轉半徑,θ為擺角),此時地震儀的系統方程式將會略加複雜。

為了解決這些問題,現代化的地震儀使用迴授控制技術[註3],控制質量塊之位置使其與地面震動無相對位移,此時控制的力量即與地面震動加速度成正比,此方式可以增加地震儀的頻寬,卻不增加其體積(譬如不需更大的質量塊),又可保持地震動觀測之線性度[註4],此技術已成為現代地震儀之基石。

設置於地球所大廳之AS-1地震儀所觀測之2017.11.11南投地震

最後,筆者希望透過組裝及運用 AS-1 地震儀的經驗,讓更多有興趣的人瞭解地震觀測儀器的原理,進而成立討論社群。期許 AS-1 地震儀的推廣教育,也能對地震的防救災有所貢獻!

備註

  • [註1]:簡單來說,系統響應是指地震儀器相對於真實地震情況的感應和記錄的能力,包括地震波的振幅與相位與頻率的關係。
  • [註2]:在沒有阻尼的機制下,便無法阻止地震後彈簧和質量塊多餘的晃動,這些紀錄便干擾了地震波紀錄。
  • [註3]:迴授控制:相對於 AS-1 地震儀其磁鐵與彈簧懸吊可自由運動我們稱其為開迴路系統 (open-loop system),另外一種地震儀的設計透過感測器來監控磁鐵與線圈的相對位移,並提供額外電流於線圈,所產生的電磁場可以改變磁鐵的位置,最終目的在於讓磁鐵與線圈無相對位移,稱為閉迴路系統 (close-loop system),而此控制技術稱為迴授控制。
  • [註4]:數學上來說線性關係為輸入與輸出可用一階線性方程式來描述,簡單來說為地震儀觀測之輸入(地動)與輸出(電壓)維持常數倍率之關係。

本文轉載自震識:那些你想知道的震事,原文為《地震儀自己動手作:AS-1地震儀介紹》,也歡迎追蹤粉絲頁震識:那些你想知道的震事了解更多地震事。


泛知識節倒數一周!3/30、3/31隆重登場!

宇宙間有好多好多的知識,怎麼學都讓人不滿足。而學習也有好多好多方式,才不只是背誦跟考試。

讓我們在泛知識節一起探索學習的 N 種方式,找回學習的樂趣、求知的純粹,讓天下沒有難學的知識!

想知道學習還有什麼可能?就來知識節吧:http://bit.ly/2FgTb83

想了解更多可以去官網看看喔:http://bit.ly/2FhrsUF


泛科學院精選線上課程:爸媽需要搞懂的 14 堂大腦教養課(預購)

老是覺得小孩不乖?各位爸媽別煩惱,一起跟著資深心理師學習「教養心理學」,了解孩子的心理狀態和發展需求,讓親子之間溝通更順暢、關係更親密!

The post 運用高中物理,你也能做出美國設計的AS-1 地震儀 appeared first on PanSci 泛科學.

相對論流體動力學也出現在量子元件上!台師大研究揭開石墨烯材料之謎

國立臺灣師範大學光電工程研究所助理教授楊承山與美國加州大學柏克萊分校(UCBerkeley)物理系合作,發現並成功解釋超潔淨石墨烯中的量子臨界相對論電漿現象,並刊登於最新一期的全球最權威學術期刊《科學》(Science),解開十幾年來於二維材料科學中無法解釋的謎題。

揭示石墨烯存在於典型電子系統中觀察不到的相對論現象,對未來在超快量子元件的發展,佔有非常舉足輕重的角色。而微小化的兆赫波系統設計,更可望使兆赫波技術於高速無線通訊、儀器與檢測、新穎材料及國土安檢系統廣泛應用,進而改變人類生活。

石墨烯是甚麼?

石墨烯(Graphene)是由炭原子以 sp2混成軌域組成六角型呈蜂巢晶格的平面薄膜,厚度只有一個碳原子,是目前已知最堅硬的奈米材料。近年來石墨烯的出現在科學界激起了巨大波瀾,引發了研究熱潮。經過十多年研究,科學家發現,石墨烯是電阻率最小、導電性最佳,已知強度最高的物質,其透光性、導熱性、韌性非常好。可應用於透明觸控螢幕或太陽能電池。

科學家還發現,石墨烯可產生兆赫(terahertz, THz)範圍的輻射—將紅外線照射到石墨烯薄膜上,只需很短時間就能放射出兆赫的光源,進而開發出能在室溫條件下工作的高性能兆赫波雷射器。

石墨烯。圖/wikimedia

兆赫波的廣泛應用

兆赫波是指輻射頻率介於 0.1 THz 到 10 THz,波長範圍介於微波與紅外線之間的電磁波。由於其可應用在各式安檢設備,如海關、警局、醫院等,用來檢測X光偵測不到的塑膠炸彈、陶瓷武器及生物藥劑等危險物品;在醫學方面的應用,由於兆赫波的光子能量較低,影響人體的輻射能量遠低於X光,非常安全,甚至可在做生醫檢測時,更精準地知道手術成功機率;

在通訊方面,未來進入 5G 時代,兆赫波比目前使用的微波傳輸頻寬更廣,與光纖通訊網路結合,將能突破傳遞的距離限制,提供更快的網路服務,甚至比 Wi-Fi 標準快上數百倍速度。

兆赫波的輻射頻率範圍。圖/Wiki commons by Tatoute, CC BY-SA 3.0

綜合以上所述,兆赫波被全世界列為十大重要技術之一。過去科學家不知道如何穩定的產生兆赫波光源,直到 30 年前發明超快雷射後,可使用它所發射的飛秒脈衝產生兆赫波,才漸漸開始發展,並進行全面之科學研究,屬於未來光電科技的新興領域。

兆赫波微小晶片(On-chip)波導光譜系統。圖/國立台灣師範大學新聞稿

石墨烯應具有相對論現象!

臺灣師大光電所楊承山助理教授、美國加州大學柏克萊分校物理系王楓教授以及其博士後研究員 Patrick Gallagher 等人所組成的跨國研究團隊,費時近兩年時間完成這項突破性成果,整個實驗品大小約 3 平方公分。

團隊預期接近電中性的石墨烯應該像量子臨界相對論性電漿態「狄拉克流體」一樣,這是一種由相對論流體動力學描述的電子和電洞的量子臨界電漿體。團隊使用兆赫波微小晶片 (On-chip) 波導光譜系統,測量石墨烯中電子溫度介於 77 K和室溫 (300 K) 之間的量子臨界相對論電漿現象。其中包括發現狄拉克流體 (Dirac Fluid) 的臨界散射率特徵;以及發現其在較高摻雜濃度時,發現了同時具有零和非零總動量這兩種截然不同的載流模式,其為相對論流體動力學的一種重要表現形式。

這項研究工作揭示了材料的量子臨界性,其中每個部份處於有序和無序的量子疊加(類似於薛丁格的貓,在死和活著的量子態中疊加),以及石墨烯中電荷中性附近的異常動態激發。Landau 的費米液態(Fermiliquid)理論將典型金屬的電子相互作用定義為一種無交互作用準粒子的理想氣體。

然而,在石墨烯中,由於其線性能帶結構和強烈地庫侖交互作用,該理論並不適用。在輕度摻雜的情況下,研究團隊發現電流可以通過兩種不同的零和非零總動量模式來承載。隨著摻雜濃度的增加,零動量模式的行為會減少,而有限動量模式則會增加,進而形成從狄拉克流體到費米液體行為的過渡現象。

而在實際的實驗進行方式上,兆赫波時域光譜可在相當寬頻之範圍觀察量子臨界導電率,非常適合用於觀察該現象。然而,由於兆赫波繞射極限的關係,傳統的兆赫光譜儀僅能用於量測缺陷較多,動量較低的大面積石墨烯薄膜,進而觀測不到狄拉克流體的特性。

在此工作中,跨國研究團隊利用兆赫波微小晶片波導光譜系統,測量石墨烯中電子溫度介於 77K 和室溫 (300K) 之間的量子臨界相對論電漿現象,以確認電荷中性附近的量子臨界散射率。為了改變材料環境的溫度,研究團隊調整了激發光和兆赫探測脈衝之間的時間延遲,通過觀察兆赫波傳輸的穿透率變化來描述電荷中性下之載子運輸。

透過這種方式,此跨國研究團隊證明了狄拉克流體在石墨烯的實驗結果與相對論流體動力學理論之間的定量一致性,意味著石墨烯應具有相對論現象,這在典型的電子系統中是看不到的,相對論流體動力學在典型的電子系統並不適用。

  • 本研究成果已於108年2月28日刊登於國際期刊《科學》(Science),文章標題為:Quantum-critical conductivity of the Dirac fluid in graphene
  • 本文部分改寫自國立臺灣師範大學新聞稿,原標題為〈光電所楊承山跨國團隊研究 榮登國際頂尖期刊《Science》發現石墨烯中的量子臨界相對論電漿現象可望使超快量子元件 兆赫波技術廣泛應用 改變人類生活〉

泛知識節倒數中!3/30、3/31隆重登場!

知識能不能當飯吃?當然!但要做得好吃、容易消化,還要讓人收穫滿滿,那可真是門學問。

泛知識節裡,我們要和你分享「科學可以怎麼學?」「科普書如何鍊成?」、「知識型Youtuber們的辛酸血淚史」、「有趣的展覽如何策劃?」還有「官方科普如何把研究說得有趣?」

想知道這些獨家秘辛,就快來:http://bit.ly/2Hm3MRv

想了解更多可以去官網看看喔:https://panfest.panmedia.asia/


泛科學院精選線上課程:爸媽需要搞懂的 14 堂大腦教養課(預購)

老是覺得小孩不乖?各位爸媽別煩惱,一起跟著資深心理師學習「教養心理學」,了解孩子的心理狀態和發展需求,讓親子之間溝通更順暢、關係更親密!

The post 相對論流體動力學也出現在量子元件上!台師大研究揭開石墨烯材料之謎 appeared first on PanSci 泛科學.

會算「貝氏定理」的人生是彩色的!該如何利用它讓生活更美好呢?

  • 作者:林澤民、巫俊穎

對於許多上過統計課的學生而言,貝氏定理(Bayes Theorem)是又熟悉又陌生的。熟悉,是因為絕大多數的大學或研究所統計課堂都有教貝式定理;陌生,則是因為許多學生上完統計課之後,對於貝式定理仍然一知半解,甚至視為畏途。

根據我們的觀察,造成此現象的原因有二:首先,一般基本統計學教科書雖然會提到貝氏定理,但絕大多數的教科書仍然只涵蓋以P值檢定為基礎的傳統「次數統計推論」(frequentist statistical inference)。學生即使學了貝氏定理,也只把它當作一個數學公式,不知道它對學習統計學有什麼幫助,更不知道它具備生活實用性。其次,貝式定理的數學表示式難以背誦;即使一時背了,也容易忘記。

source:Wikimedia

 

以下是教科書上常見的貝式定理定義:假定事件A和事件B發生的機率分別是 Pr(A) 和 Pr(B),則在事件 B 已經發生的前提之下,事件 A 發生的機率是(其中「¬」在邏輯上為「非」的符號:「¬A」即「非A」):

如果沒有充分理解機率運算的定義和法則,實在難以理解此公式背後的邏輯。許多學生因此強記上述公式以準備考試,只求能解題而不求理解;公式反而成為學習貝式定理的主要障礙。

本文的主要目的是要破除許多學生對於貝式定理「困難又不實用」的刻板印象。事實上,我們生活之中有許多情況必須要運用貝式定理的邏輯思考,否則便容易產生偏差甚至陷於謬誤。

被撞到的都是好人?讓貝氏定理算給你看看

圖/pixabay

舉例來說,每逢有人因車禍不幸橫死,當記者報導死者是孝子,我們常唏噓說為何橫死的都是好人?這樣的想法,其實犯了諾貝爾經濟學獎得主、心理學家 Daniel Kahneman 所說的「基率謬誤」(base rate fallacy)。簡單來說,就是沒有把「絕大多數人都是好人」這個「基率」——貝氏定理所謂的先驗機率(prior probability)——納入考量所致。因為絕大多數人都是好人,即使老天爺真的大致上賞善罰惡,橫死的人也會大多是好人,更不用說車禍應該跟善惡無關了。

比如我們假設每100人中只有1人(1%)是十惡不赦的「壞人」,其餘99人(99%)都是「好人」。再假設90%的壞人果然都遭車禍橫死,而只有10%的好人意外橫死。這樣老天算是有眼了,可是如果今天有人意外橫死,請問他是好人的機率多少呢?用貝氏定理可以算出Pr(好人|橫死)=0.92,也就是橫死的人中有92%會是「好人」,只有8%是壞人!這正是因為大部分人都是好人,出事的當然容易是好人,即使老天有眼也是一樣。

貝氏定理的原理就是在先驗機率的基礎上,納入新事件的資訊來更新先驗機率,這樣算出來的機率便叫做後驗機率(posterior probability)。以前述好人橫死的例子來說,先驗機率的分配是 Pr(好人)=0.99及Pr(壞人)=0.01。在無其他資訊的情況下,我們在街上隨機遇到一個人,此人為好人的機率是0.99。

但現在此人被車子撞死了,根據我們對老天有眼的假設(Pr(橫死|好人)=0.1 及 Pr(橫死|壞人)=0.9),好人不容易橫死,而此人橫死了,這新事件的資訊可以讓我們用貝氏定理來計算後驗機率 Pr(好人|橫死)=0.92,也就是此人為好人的機率變小。新事件的資訊改變了我們原來的估計,這就是所謂「貝氏更新」(Bayesian updating)。

圖/makeagif

如果我們沒有把先驗機率納入計算,我們很可能因為相信老天有眼,橫死的應該大多是壞人,就斷此人很可能是壞人。而若確定此人是好人,我們就唏噓不已,甚至怨罵老天。這兩種反應的人其實都犯了「基率謬誤」。當然,如果車禍跟人的好壞無關,也就是不論好人壞人橫死的機率都一樣,則有人橫死的新事件是不會更新我們對他是好人或壞人的基率的。

Kahneman在《快思慢想》一書中舉了一個也是跟車禍有關的「基率謬誤」的例子。某天夜晚城裡發生了一件車禍,肇事的車子逃逸,但有證人指認那是一輛藍色的計程車。城裡只有藍色、綠色兩種計程車;綠色車佔85%,藍色車僅佔15%。法庭檢驗證人在夜晚識別車色的能力,發現他識別正確的機率是80%,而識別錯誤的機率是20%。

當Kahneman做實驗問受測者肇事車輛為藍色的機率多少時,大部分人的答案是80%。這也是犯了「基率謬誤」的答案,也就是城裡「綠色車佔85%,藍色車佔15%」這個基率所包含的資訊被忽略了。如果把基率納入考量,貝氏定理給的答案是Pr(肇事車真為藍色|證人指認為藍色)=0.41,只有一般人想像中的一半!

現實生活中類似的例子很多:身體檢查某項檢驗得到陽性反應、職棒大聯盟球員沒通過藥檢、犯罪現場採得的DNA與調查局資料庫CODIS中某人的DNA相符、甚至統計上P值檢定得到顯著結果。這些情況中,如果我們不了解貝氏定理,我們很可能就會在機率估計上犯錯。那麼貝氏定理究竟要如何拿來計算正確的後驗機率呢?本文將用淺易的途徑來介紹貝氏定理的計算方法。

聯合機率、邊際機率以及條件機率三種必須認識的機率

欲瞭解貝式定理的邏輯,必須先瞭解三種不同的機率:聯合機率(joint probability)、邊際機率(marginal probability)以及條件機率(conditional probability)。

假設有兩個隨機變數(random variable)X和Y,變數X有1, 2, …, J共J個可能的值,而變數Y有1, 2, …, I共I個值。在此可以將變數的「值」視為前面提及的「事件」(event),舉例來說,X代表大聯盟球員有沒有使用禁藥,X=1代表「沒有使用」,X=2代表「有使用」;Y代表藥檢的結果,Y=1代表「陽性反應」,Y=2代表「陰性反應」。這裡X=1、X=2、Y=1、Y=2都是其發生有一定機率的事件。如果我們想要檢視X和Y之間的關係,可以繪製出下列交叉表:

我們先從概念開始介紹。表一所陳列的Y跟X聯合起來所有可能的結果可以用 {(1,1), (1,2), …, (i,j), …, (I,J)} 這個集合來表示,這就是Y跟X聯合起來的「樣本空間」,它一共有IxJ個可能結果。每一個結果所對應的機率是Y跟X的聯合機率,也就是屬於Y的事件Y=i和屬於X的事件X=j聯合發生的機率,數學表示為Pr(Y=i,X=j)=πij。例如π11就是Y=1和X=1這兩個事件都發生的機率,π12則是Y=1和X=2這兩個事件都發生的機率,以此類推。如果我們把所有可能結果的機率加總,從π11加到πIJ,總和必須是1。

邊際機率則是屬於Y或X的單一事件發生的機率。表一中,Y的樣本空間是 {1, 2, …, i, …, I};屬於Y的事件發生的邊際機率用Pr(Y=i)=πi.表示。X的樣本空間是 {1, 2, …, j, …, J};屬於X的事件發生的邊際機率用Pr(X=j)=π.j表示。例如π1.就是Y=1這個事件發生的機率,π.2則是X=2這個事件發生的機率,以此類推。Y或X所有邊際機率的總和也必須是1。在表一裡,我們以行或列的總和來計算邊際機率。邊際機率其實就是單一變數的機率分配,之所以稱為邊際機率指是因為我們從表一的雙變數聯合機率分配的脈絡出發,導出單一變數分配的緣故。

最後,條件機率是在屬於X的事件已經發生的前提之下,屬於Y的事件發生的機率,或是在屬於Y的事件已經發生的前提之下,屬於X的事件發生的機率。例如Pr(Y=i|X=j)是在X=j這個事件已經發生的前提下,Y=i這個事件發生的機率;而Pr(X=j|Y=i)是在Y=i這個事件已經發生的前提下,X=j這個事件發生的機率。

條件機率的樣本空間只是聯合機率樣本空間的一部份。在表一中,Y跟X聯合起來的樣本空間一共有IxJ個可能結果。但當我們以X=j這個事件已經發生為前提時,Y這個變數的樣本空間就被侷限在 {(1,j), (2,j), …, (i,j), …, (I,j)} 這I個結果的範圍裡。同樣的,當我們以Y= i這個事件已經發生為前提時,X這個變數的樣本空間就被侷限在 {(i,1), (i,2), …, (i,j), … (i,J)} 這J個結果的範圍裡。因為樣本空間改變,機率也會有所不同。其計算如下:

這也就是說,條件機率等於聯合機率除以條件變數的邊際機率。反過來講,聯合機率等於條件機率乘以條件變數的邊際機率,如下式所示:

此公式稱為機率的乘法法則(Multiplication Rule),這個法則對於理解貝式定理至關重要。

前述提及條件機率有兩種,分別為Pr(Y=i|X=j)以及Pr(X=j|Y=i),差別僅在於是以X變數的特定事件為給定前提,還是以Y變數的特定事件為給定前提。表一中,因為X是「行」(column,台灣稱「行」,中國大陸稱「列」)的變數,我們把以X變數特定事件為給定前提的條件機率稱之為「行的條件機率」(column conditional probability);如果是以Y變數特定事件為給定前提的條件機率,因為Y是「列」(row,台灣稱「列」,中國大陸稱「行」)的變數,我們稱之為「列的條件機率」(row conditional probability)。

Pr(Y=i|X=j)以及Pr(X=j|Y=i)這兩個機率,我們可以說它們互為「反機率」(inverse probability)。我們以X和Y分別只有兩個值為例,以表二和表三加以說明:

貝式定理算什麼?怎麼算?

接下來要進入本文的主題了,究竟貝式定理是什麼,怎麼算?

說穿了,貝式定理就是將行的條件機率轉變成列的條件機率,或是將列的條件機率轉變成行的條件機率。貝式定理公式看似複雜,背後邏輯其實相當簡單,它就是一個將「給定 X 事件已發生的前提下,Y 事件發生的條件機率」轉變成「給定 Y 事件已發生的前提下,X 事件發生的條件機率」的過程而已。換句話說,貝氏定理就是在算反機率

圖/pixabay

我們先用一個簡單但實用的例子來說明這個觀念。這個例子出自「看電影學統計: p值的陷阱」一文:

美國職棒大聯盟(Major League Baseball)抽查球員是否使用禁藥 PED(performance enhancing drugs),結果某明星球員藥檢測出有陽性反應。——我們要問的是:這位明星球員其實是清白的機率是多少?

要算這個機率, 我們必須要有球員是否使用 PED 的先驗機率,也就是在還未對球員實施藥檢之前,我們必須先對他是否使用 PED 的機率有一個初步估計。這個估計可能相當主觀,但也未嘗不能用客觀的數據加以估計,比如之前抽檢的結果。另外,我們還必須知道藥檢的準確率,也就是球員真有使用 PED 時藥檢結果呈現陽性的機率,和球員沒有使用 PED 時藥檢結果呈現陰性的機率。

假設我們擁有的這兩項資訊如下:

  1. 根據以前的藥檢結果,我們合理估計大約有 6% 大聯盟球員有使用 PED。
  2. 藥檢的準確率為 0.95:如果球員真的使用了 PED,藥檢結果呈現陽性的機率是 0.95;而如果球員沒有使用 PED,藥檢結果呈現陰性的機率也是 0.95。(這兩個機率不必一樣。)

第一項資訊提供了貝氏定理所需要的先驗機率,也就是在明星球員還沒實施藥檢前,我們對他是否使用 PED 最好的猜測只能是 0.06的機率有使用,0.94 的機率沒使用。第二項資訊告訴我們大聯盟的藥檢的「偽陽性」(false positive)機率──球員並未使用 PED但藥檢結果呈陽性反應的機率──是 0.05,「偽陰性」(false negative)機率—球員有使用 PED 但藥檢結果呈陰性反應的機率──也是0.05。

圖/pexels

如果我們的明星球員藥檢呈陽性反應,我們可能會認為藥檢結果錯誤的機率只有 0.05。但這是沒有考慮先驗機率的想法,我們這樣想就是犯了「基率謬誤」。要考量先驗機率,必須要使用貝氏定理來算後驗機率,也就是要算出「偽陽性的反機率」。

我們用 Y 來代表「藥檢結果是陽性還是陰性」的隨機變數;Y=1 代表藥檢結果呈陽性反應,Y=2 代表藥檢結果呈陰性反應。我們再用X來代表「球員有沒有使用PED」的隨機變數;X=1代表沒有使用,X=2代表有使用。這樣定義之後,我們可以看出:先驗機率是X的邊際機率Pr(X=1)=0.94,Pr(X=2)=0.06。藥檢的準確率和偽陽性、偽陰性機率都是行的條件機率:Pr(Y=1|X=1)=0.05,Pr(Y=2|X=1)=0.95,Pr(Y=1|X=2)=0.95,Pr(Y=2|X=2)=0.05。我們將這些數據放到表二之中可以得到下列表四:

前面說過貝式定理就是將行的條件機率轉變成列的條件機率,或是將列的條件機率轉變成行的條件機率。現在我們已經有行的條件機率了,那麼怎麼求列的條件機率呢?首先我們必須先要算出Y跟X的聯合機率和Y的邊際機率。算聯合機率必須使用機率的乘法法則

也就是把行的條件機率跟X的邊際機率相乘。就是在這裡,我們必須要用到X的先驗機率!聯合機率算出來之後,把各列的聯合機率加總就得到Y的邊際機率:

有了聯合機率跟Y的邊際機率,我們就可以輕易計算列的條件機率了:

事實上,如果我們只是要算「藥檢結果是陽性而實際上球員是清白的機率」,我們只要算左上角 Pr(X=1|Y=1) 這個機率就夠了:

以下我們提供第二個例子:用貝氏定理來求解有名的「蒙提霍爾」電視遊戲問題。

蒙提霍爾問題:三扇門選一,贏得汽車大獎

圖/flickr

這是美國電視台一個相當有名的電視遊戲,相信不少讀者都已聽過,我們在此簡單介紹一下。這個遊戲一開始,主持人(Monty Hall)給妳看三道門。他告訴妳:

三道門中,有一道門後面有一輛汽車,另外兩道門後面各有一隻山羊。

Monty 要妳挑選一道門,但先不要打開。妳挑定了一道門之後,Monty 打開另外兩道門之一,顯示門後有一隻山羊。這時 Monty 問妳要維持本來選定的門,還是要換選那一道沒開的門。如果妳選到藏有汽車的那道門,便可贏得汽車,否則便贏到山羊。(如果想看更詳細的遊戲說明,可參考維基百科的蒙提霍爾問題條目)。

這個遊戲的答案是要換,理由很簡單,並不需要用貝氏定理來算。因為參賽者原來隨機選擇的門可以猜中汽車的機率是 1/3,那麼汽車在另兩個門其中之一後面的機率就是 2/3,然而現在 Monty 開了兩個門其中之一,其後並無汽車,那麼這 2/3 的機率便完全屬於另一道門了!參賽者如果換門,抽中汽車的機率將加倍!

圖/wikimedia

雖然如此,當號稱全世界 IQ 最高的專欄作家 Marilyn vos Savant 這樣解釋時,很多讀者不相信。包括數學教授在內的眾多讀者都批評她,說她錯了。這些讀者認為還未開的兩道門可以猜中汽車的機率應該一樣,換門並沒有用。

因為這個問題相當有趣,而且比上例要複雜些,這裡我們用它來幫助我們學習貝氏定理。在此例子之中有兩個變數:汽車的位置和主持人開啟的門,兩個變數各自有三種可能結果:1號、2號以及3號門,交叉相乘可以有九種可能的事件組合。

我們假設參賽者一開始猜選的門為 1號門(在下表中用【1】表示),接著主持人要開啟 2號或 3號門之中後面藏有山羊的那一道門。此時我們必須要知道:

  1. 按照規則,在參賽者選了 1號門之後,主持人就不能開啟 1號門,不論 1號門後面是山羊或汽車都是如此;
  2. 哪一號門會被主持人開啟?這事件的機率皆為條件機率,因為主持人是在已知汽車是在哪一道門後面的前提下做出的選擇;
  3. 主持人理所當然不會開啟後面有汽車的那道門。我們以M代表主持人做出的選擇。

如果汽車就在 1號門後面,那 2號和 3號門後面皆為山羊,因此在參賽者猜了 1號門的情況下,主持人可從 2號及 3號門之中隨機選一道門開啟,因此 Pr(M=2|C=1) 與 Pr(M=3|C=1) 條件機率皆為 1/2。如果汽車在 2號門後面而參賽者猜了 1號門,主持人在不能開啟 1號門和 2號門的情況下只能開啟3號門,因此 Pr(M=3|C=2)=1,此規則也適用在汽車在 3號門後面的情況。當然,參賽者只能看到主持人開了什麼門,根本不知道主持人葫蘆裡賣什麼藥。

據此,我們可以填出表七的先驗機率及條件機率並以之求得表八的聯合機率:

接下來就是直接求列的條件機率了:

這個表第二列的詮釋如下:假設主持人開啟了 2號門則門後是汽車的機率為 0(按照規則),而參賽者維持 1號門和改變主意改選 3號門這兩種策略抽中汽車的機率分別是 1/3和 2/3。這兩個機率是「在已知主持人開啟2號門的給定前提之下,汽車在 1號或 3號門後面」的列的條件機率,在已知所有聯合機率的情況下,我們可以用條件機率的定義輕易算得:

這就是為何參賽者更改選擇至 3號門抽中汽車的機率(2/3)會比維持原初1號門猜測而抽中汽車的機率(1/3)還要高的由來。有興趣的讀者不妨試算「在主持人開啟 3號門的前提下」的條件機率,會發現結果仍是一致的:更換選擇抽中汽車的機率仍是 2/3,不更換抽中汽車的機率仍是 1/3。

正是因為一開始參賽者猜對的機率是 1/3、猜錯的機率是 2/3,致使主持人開啟一道後面是山羊的門的時候,如果參賽者換選僅剩的那道門會有 2/3 的機率猜對。貝式定理以數學方式釐清了這一點。

貝式定理,就在你的生活中

貝式定理在統計學的應用越見廣泛,也讓許多學生以為貝式定理只有跟「貝式統計推論」(Bayesian statistical inference)相關,沒用到貝式統計分析就不需要學會。其實貝式定理在生活之中是很有用的,本文以淺顯的方式介紹貝式定理的邏輯和計算方法,不僅期望讀者在學貝氏定理時確實理解那些複雜公式的由來,也希望讀者將貝式定理的邏輯思維運用到日常生活之中。要學會貝氏定理才能避免「基率謬誤」,正確地用新事件的資訊來更新我們原所信仰的先驗機率。

(Photo Credit: Wikipedia)


泛知識節倒數中!3/30、3/31隆重登場!

知識能不能當飯吃?當然!但要做得好吃、容易消化,還要讓人收穫滿滿,那可真是門學問。

泛知識節裡,我們要和你分享「科學可以怎麼學?」「科普書如何鍊成?」、「知識型Youtuber們的辛酸血淚史」、「有趣的展覽如何策劃?」還有「官方科普如何把研究說得有趣?」

想知道這些獨家秘辛,就快來:http://bit.ly/2Hm3MRv

想了解更多可以去官網看看喔:https://panfest.panmedia.asia/


泛科學院精選線上課程:爸媽需要搞懂的 14 堂大腦教養課(預購)

老是覺得小孩不乖?各位爸媽別煩惱,一起跟著資深心理師學習「教養心理學」,了解孩子的心理狀態和發展需求,讓親子之間溝通更順暢、關係更親密!

The post 會算「貝氏定理」的人生是彩色的!該如何利用它讓生活更美好呢? appeared first on PanSci 泛科學.

加熱式菸品?電子煙?傻傻分不清楚

本文為國民健康署廣告,泛科學企劃執行

  • 文/林宇軒

「吸菸有害健康啊!」無論你是不是癮君子,大概都聽過不少次。

多數人都知道抽菸有害身體健康,癮君子們更是聽到耳朵長繭,都還是戒不掉。戒菸這麼困難,那使用一些紙菸的替代品,像是加熱式菸品或是電子煙,會不會比較好呢?替代品真的比較好嗎?

請跟著我們一起看看,目前科學研究上的證據,加熱式菸品和電子煙,到底是壞人,還是包著糖衣的假面?

圖/pixabay

讓人陶醉的惡魔:尼古丁

在開始討論紙菸替代品的優劣之前,要先來了解一下,為什麼會說抽菸不好,到底不好在哪裡?

尼古丁是紙菸之所以這麼令人陶醉的主要原因,點燃以後飄起的那一縷縷白煙,充滿了讓人感受到無比放鬆的尼古丁分子。當尼古丁被吸入體內以後,透過血液循環到達神經系統,尼古丁會與神經細胞上、負責接收訊號的乙醯膽鹼受體結合,牢牢抓住受體,不容易被代謝掉。而且尼古丁和該受體還結合得特別緊,半衰期長達 2 小時,不像神經傳遞物質 ── 乙醯膽鹼 ── 很快就被清除掉,半衰期大概只有短短的 1 分鐘左右 [1]。

也就是說尼古丁的存在,會讓神經細胞覺得:「哇!我一直收到很多獎勵訊號。」進而刺激大腦分泌多巴胺,讓我們感覺放鬆、產生幸福的滋味。

只不過這樣會讓神經系統處在活躍狀態的時間太長,為了避免神經系統受不了,吸菸者的神經細胞就會產生更多的乙醯膽鹼受體,降低神經細胞的敏感度,讓神經細胞比較不那麼興奮。

反之,如果停止吸入尼古丁,神經細胞便感覺不太到原有的神經傳遞物質,就會出現戒斷症狀:注意力不集中、情緒低落、煩躁、易怒等。隨著抽菸的次數增加,這個抑制的機制會讓原本的吸菸量變得越來越無法放鬆、產生愉悅感,讓許多原本只要抽一支菸就可以撐一兩週的人,到後來每次只能撐個一、兩小時,就必須再點下一根了。

許多人以為,抽菸要抽很多次才會上癮,但尼古丁最厲害的就是,只要吸一次,大腦結構就被改變了。研究發現給予大鼠一根菸的尼古丁量,就足以讓大腦 88% 的受體與尼古丁結合 [2]。另一篇研究調查了美國七年級青少年的吸菸經驗,62% 的青少年表示他們只抽過一次,就出現了戒斷症狀 [3],也就是說,只要一根菸,大腦就開始啟動抑制機制,帶你邁向成癮之路。

吸菸有什麼糟的?

吸菸會造成身體的危害可不是亂說的,菸草本身就含有一些致癌物。菸草中最致癌的莫過於這三種分子:N- 亞硝基降菸鹼 (NNN) 和它的代謝產物 (NNAL),以及 4-甲基亞硝胺 -1-3-(吡)啶基 -1-丁酮 (NNK)。這幾項都已經有許多研究指出,會導致肺癌、胰臟癌、食道癌與口腔癌的罹患率風險提高 [4]。

除此之外,在菸草燃燒的過程中,還會產生焦油。焦油的外觀看起來是黑色粘稠的液體,所以你會在一些阻止你買菸的廣告上看到黑掉的肺部,那個就是把焦油吸進肺部之後的樣子。焦油當中包含了許多的致癌物,包括許多的多環芳香烴,這些含有苯環的複雜分子,很多都會刺激氣管、支氣管和肺部,而且是致癌物質,還會增加罹患肺癌和口腔癌的風險。

舉例來說,BPDE(Benzo(a)pyrene diol epoxide,一種環芳香烴碳氫化合物),這個分子進到細胞內之後,會附著到細胞中 p53 基因的位置,造成基因受損,最終導致肺癌。1996 年,科學家在紙菸中找到這個分子,並在《科學》期刊中發表這篇論文,這個研究說明了燃燒菸草產生的致癌物與人類癌症有直接的關聯性[5]。(延伸閱讀:菸草致癌研究風雲:科學家與菸草商的鬥智—《p53:破解癌症密碼的基因》

那尼古丁呢?目前關於尼古丁對人體的危害證據還很分歧,部分研究結果認為看不出來尼古丁對成人有明顯的影響 [6],然而也有一些研究持相反看法,認為長期暴露於尼古丁煙霧的安全性仍屬未知 [7]。不過,倒是不少研究認為,尼古丁對青少年的神經系統影響比成人更大,比成人更容易成癮 [8,9],對胎兒和幼兒就更不用說了,甚至可能會影響孩童的腦部發育 [10]。然而,光是尼古丁讓人們成癮的特性,就已經會大大地提高暴露於前述幾種致癌物的風險,完全不能說菸草中的尼古丁無害。

圖/pixabay

用加熱式菸品就可以了?

圖/wikimedia

既然燃燒會產生致癌的焦油,而吸菸只是需要尼古丁帶來的愉悅感,那麼不把菸草點燃總行了吧?國外有一些加熱式菸品,是將菸草柱插入加熱用的金屬片中,並以電池充電來加熱菸草柱,當溫度夠高的時候,菸草中的「有感」成分能被蒸出來吸食。

加熱式菸品少了燃燒這個步驟,因此其中的致癌物質 ── 焦油 ── 也可能減少 [11],而尼古丁還是會被蒸出來,只不過攝入的尼古丁含量可能因此會比抽一般的紙菸來的低,可能會導致許多人吸食頻率增加,那麼菸草中本身所含有的那些致癌物質,可能反而會吸得比原本抽紙菸來的更多,健康的風險可能不減反增。

那沒有菸草的電子煙又如何?

圖/pixabay

另外一種非燃燒式的菸品就是電子煙。電子煙的運作方式,是將菸商製造的煙油加入電子煙的容器中,再透過電池將線圈加熱,線圈會加熱煙油使其氣化,而使用者就是吸食煙油氣化後產生的蒸氣。

電子煙在美國青少年族群中的使用率近年快速攀升,是因為電子煙有更濃的煙霧讓視覺效果更好、味道較佳、較強的喉韻 (throat hit)、出於好奇等因素 [15],許多電子煙商看準這點還紛紛推出各種不同口味的產品,製造噱頭吸引年輕人嘗試。

許多電子煙製造商宣稱不含尼古丁,可以減少成癮的可能,但是衛福部 2016 年抽樣調查三千多件電子煙產品的結果,發現有近八成的產品含有尼古丁 [16],根本無法避免成癮,還會讓使用者更容易沉溺其中。有研究發現,使用電子煙的青少年,日後抽紙菸的比率大幅提高 6 倍之多 [17]。

不過,電子煙標榜沒有燃燒的過程,所以不會產生焦油,而且電子煙並沒有使用菸草,不含有菸草中所含有的那些致癌物。但是,這並不代表煙油就很安全,煙油的溶劑中含有許多致癌的化學物質,例如:苯、環氧乙烷、丙烯腈、丙烯醛、丙烯醯胺等致癌物,研究發現電子煙使用者的尿液中,這些致癌物的代謝物顯著高於不吸菸者,根本無法說電子煙無害 [18],而且青少年吸菸者嘗試吸電子煙後,最終很容易同時使用紙菸和電子煙,根本雪上加霜 [19]。

更可怕的是,電子煙和加熱式菸品的電池還有可能在不啟動的狀態下,從你的口袋中爆炸,光是在美國就已經發生過很多起案例。看看下面新聞影片的連結,你能想像,要是電子煙是在嘴裡爆炸,那該有多可怕?(延伸閱讀:電子煙爆炸案並非個案 研究:爆炸意外次數比你想得多 – 地球圖輯隊

朋友,抽任何一種菸都沒有比較安全啊!

資料整理/林宇軒
圖/泛科學製

總結來看,加熱式菸品和一般燃燒紙菸一樣有焦油和尼古丁的危害,反而會讓癮君子情不自禁的抽更多;而電子煙雖然沒有了菸草,但仍可能含尼古丁,且多出了更多種致癌物,成癮性也沒有比較低。更可怕的是這兩種的電池還有可能會突然爆炸,完全無法說這兩種紙菸替代品比較安全。

目前,台灣還沒有正式准許這些替代性菸品進口,許多人會違法偷偷從國外買進來。對於不想戒菸的癮君子來說,這些替代性產品的危害根本不重要;而對於想戒除尼古丁成癮的人來說,目前也沒有明確證據指出,替代性菸品是有效的方法;但是那些產品的酷炫與新鮮感,對於未曾吸菸的青少年來說,會是踏入菸品世界的敲門磚,一旦開始使用,就會越抽越多,對健康產生越多危害,減少吸菸人口的目標,大概也會越來越遠了。

參考文獻:

  1. Benowitz, N. L., Jacob, P. I. I. I., Jones, R. T., & Rosenberg, J. (1982). Interindividual variability in the metabolism and cardiovascular effects of nicotine in man. Journal of Pharmacology and Experimental Therapeutics, 221(2), 368-372.
  2. Brody, A. L., Mandelkern, M. A., London, E. D., Olmstead, R. E., Farahi, J., Scheibal, D., … & Koren, A. O. (2006). Cigarette smoking saturates brain α4β2 nicotinic acetylcholine receptors. Archives of general psychiatry, 63(8), 907-914.
  3. DiFranza, J. R., Rigotti, N. A., McNeill, A. D., Ockene, J. K., Savageau, J. A., St Cyr, D., & Coleman, M. (2000). Initial symptoms of nicotine dependence in adolescents. Tobacco control, 9(3), 313-319.
  4. Xue, J., Yang, S., & Seng, S. (2014). Mechanisms of cancer induction by tobacco-specific NNK and NNN. Cancers, 6(2), 1138-1156.
  5. Denissenko, M. F., Pao, A., Tang, M. S., & Pfeifer, G. P. (1996). Preferential formation of benzo [a] pyrene adducts at lung cancer mutational hotspots in P53. Science, 274(5286), 430-432.
  6. Dinakar, C., & O’Connor, G. T. (2016). The health effects of electronic cigarettes. New England Journal of Medicine, 375(14), 1372-1381.
  7. Franck, C., Filion, K. B., Kimmelman, J., Grad, R., & Eisenberg, M. J. (2016). Ethical considerations of e-cigarette use for tobacco harm reduction. Respiratory research, 17(1), 53.
  8. US Department of Health and Human Services. (2014). The health consequences of smoking—50 years of progress: a report of the Surgeon General. Atlanta, GA: US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health, 17.
  9. Holliday, E., & Gould, T. J. (2016). Nicotine, adolescence, and stress: a review of how stress can modulate the negative consequences of adolescent nicotine abuse. Neuroscience & Biobehavioral Reviews, 65, 173-184.
  10. Holbrook, B. D. (2016). The effects of nicotine on human fetal development. Birth Defects Research Part C: Embryo Today: Reviews, 108(2), 181-192.
  11. Mallock, N., Böss, L., Burk, R., Danziger, M., Welsch, T., Hahn, H., … & Hutzler, C. (2018). Levels of selected analytes in the emissions of “heat not burn” tobacco products that are relevant to assess human health risks. Archives of toxicology, 1-5.
  12. McNeill, A., Brose, L. S., Calder, R., Bauld, L., & Robson, D. (2018). Evidence review of e-cigarettes and heated tobacco products 2018. A report commissioned by Public Health England. London: Public Health England, 6. (Link)
  13. Benowitz, N. L., & Fraiman, J. B. (2017). Cardiovascular effects of electronic cigarettes. Nature Reviews Cardiology, 14(8), 447.
  14. Scientists describe problems in Philip Morris e-cigarette experiments”, Reuters News, 2017 Dec. 20
  15. Krishnan-Sarin, S., Morean, M., Kong, G., Bold, K. W., Camenga, D. R., Cavallo, D. A., … & Wu, R. (2017). E-cigarettes and “dripping” among high-school youth. Pediatrics, 139(3), e20163224.
  16. 電子煙、加熱式菸品你應該知道的30問 – 國民健康署
  17. Barrington-Trimis, J. L., Urman, R., Berhane, K., Unger, J. B., Cruz, T. B., Pentz, M. A., … & McConnell, R. (2016). E-cigarettes and future cigarette use. Pediatrics, 138(1), e20160379.
  18. Rubinstein, M. L., Delucchi, K., Benowitz, N. L., & Ramo, D. E. (2018). Adolescent exposure to toxic volatile organic chemicals from e-cigarettes. Pediatrics, 141(4), e20173557.
  19. Best, C., Haseen, F., Currie, D., Ozakinci, G., MacKintosh, A. M., Stead, M., … & Frank, J. (2018). Relationship between trying an electronic cigarette and subsequent cigarette experimentation in Scottish adolescents: a cohort study. Tobacco control, 27(4), 373-378.

延伸閱讀:

  1. 電子煙、加熱式菸品你應該知道的30問 – 國民健康署

泛知識節倒數中!3/30、3/31隆重登場!

知識能不能當飯吃?當然!但要做得好吃、容易消化,還要讓人收穫滿滿,那可真是門學問。

泛知識節裡,我們要和你分享「科學可以怎麼學?」「科普書如何鍊成?」、「知識型Youtuber們的辛酸血淚史」、「有趣的展覽如何策劃?」還有「官方科普如何把研究說得有趣?」

想知道這些獨家秘辛,就快來:http://bit.ly/2Hm3MRv

想了解更多可以去官網看看喔:https://panfest.panmedia.asia/


泛科學院精選線上課程:爸媽需要搞懂的 14 堂大腦教養課(預購)

老是覺得小孩不乖?各位爸媽別煩惱,一起跟著資深心理師學習「教養心理學」,了解孩子的心理狀態和發展需求,讓親子之間溝通更順暢、關係更親密!

The post 加熱式菸品?電子煙?傻傻分不清楚 appeared first on PanSci 泛科學.

世上沒有聰明藥,「利他能」到底有什麼作用?

除了長生不老之外,一夜之間突然變「聰明」、輕輕鬆鬆就可以考一百分,應該是所有人都想要的吧。所以凡是用於改善情緒、睡眠、注意力等的藥物,都相當容易被誤解為可以提升成績的「聰明藥丸」。因此,美國大學生也一度出現濫用「利他能 (Ritalin) 」的情形。

利他能其實是用來治療注意力不足 (ADHD) 的藥物,讓注意力不足的孩子能專注課業。「利他能」並不是大雄的記憶吐司,對一般人而言也沒有迅速提升智商,達到頭好壯壯的效果。

圖/pixabay

事實上,利他能從研發至今,從來都不曾有「讓人變聰明」或是任何強化大腦的神奇功能。利他能的主要成分是「派醋甲酯」 (methylphenidate HCl, MPH) 。

  • 1944年,由CIBA製藥公司開始研發。
  • 1957年左右,CIBA製藥公司開始以治療慢性疼痛、憂鬱症、躁鬱症等適應症為行銷重點,大肆推銷利他能。
  • 1960年代,一度和許多維他命和賀爾蒙藥物混搭出售,以改善使用者的情緒為主要功能。

現在利他能主要作為治療注意力不足過動症 (ADHD) 的藥物,用於提升孩童專注力。

利他能的運作原理

由於利他能的作用能有效提升專注力,常常被比喻成安非他命,但事實上兩者的運作原理和結構不盡相同。

利他能的運作原理是藉由阻止神經傳導物質被回收到突觸前神經細胞,進而提升專注力。安非他命除了會阻止神經傳導物質的回收外,也會將突觸前神經細胞儲存的神經傳導物質,在短時間內一次吐光;造成使用者的突觸間神經傳導物質的濃度,急速升高,帶來極大的興奮感;也因此極容易上癮,被列為第二級管制藥品。但用在過動症治療的利他能,則屬於第三級管制用藥。

利他能藉由抑制神經傳遞物質回收,影響神經功能,進而提升專注力。圖/wikimedia

在正常使用下,利他能並不是「毒品」,吃了並不會「High」,所以也很少出現生理上癮的現象。在美國,有時會開立含有安非他命異構物成分的 Adderall ,來治療過動症。但目前台灣並未核准藥證,家長並不需擔心。

利他能用於治療專注力不足,但對一般人有效嗎?

美國大學生與年輕運動員,濫用利他能的現象在 2010 年左右達到高峰,但目前關於未被診斷過動症的成人或孩童使用神經興奮藥物的研究還不多。初步的研究顯示,未診斷出過動症的受測者,自願使用神經興奮藥物後,在理解空間相關的問題,似乎會稍微縮短反應時間。但對於較為複雜的語言功能、理解、記憶等功能,利他能看來毫無幫助。利他能目前經過核准的適應症,適用於改善專注力,並沒有迅速精神強化,吃了會突然智商爆表的功能。

因此利他能並非聰明藥 (Study Pill) ,如今在美國濫用的狀況,也不再如同過去一樣普遍。

圖/pixabay

利他能的常見副作用

臨床上使用利他能最常見的副作用是食慾降低失眠,嚴重的話會影響孩童體重(通常不影響身高);所以盡可能在白天、飯後服藥,讓孩童能正常用餐與休息。

服藥期間,醫師通常也會持續關注孩子的食慾、精神狀態與體重變化。沒有 ADHD 的成人服用利他能而導致食慾減低的狀況並不多見,所以並不能當成減肥藥物使用。對於無需特別關注心血管的孩子,並無證據顯示,利他能會導致心血管疾病或是增加自殺機率。

在台灣治療過動症的神經興奮劑除了利他能之外,還有另外一種成分相同,但藥效較長的專思達 (Concerta) 。由於專思達的膠囊有特殊設計,能夠讓藥物緩慢釋出,延長作用時間,讓孩子一天服藥一次即可,提高接受治療的意願。

過動症的成因與治療都相當複雜,除了盡早建立對利他能等常用藥物正確的認知之外,積極地培養專注習慣,協助孩子融入學習環境,都對於提升專注力都會有所幫助。

參考文獻:

  1. Lakhan, S. E., & Kirchgessner, A. (2012). Prescription stimulants in individuals with and without attention deficit hyperactivity disorder: misuse, cognitive impact, and adverse effects. Brain and behavior2(5), 661-677.
  2. Beyer, C., Staunton, C., & Moodley, K. (2014). The implications of Methylphenidate use by healthy medical students and doctors in South Africa. BMC medical ethics15(1), 20.
  3. Ritalin,CESAR(Center for Substance Abuse Research)

泛知識節倒數中!3/30、3/31隆重登場!

知識能不能當飯吃?當然!但要做得好吃、容易消化,還要讓人收穫滿滿,那可真是門學問。

泛知識節裡,我們要和你分享「科學可以怎麼學?」「科普書如何鍊成?」、「知識型Youtuber們的辛酸血淚史」、「有趣的展覽如何策劃?」還有「官方科普如何把研究說得有趣?」

想知道這些獨家秘辛,就快來:http://bit.ly/2Hm3MRv

想了解更多可以去官網看看喔:https://panfest.panmedia.asia/


泛科學院精選線上課程:爸媽需要搞懂的 14 堂大腦教養課(預購)

老是覺得小孩不乖?各位爸媽別煩惱,一起跟著資深心理師學習「教養心理學」,了解孩子的心理狀態和發展需求,讓親子之間溝通更順暢、關係更親密!

The post 世上沒有聰明藥,「利他能」到底有什麼作用? appeared first on PanSci 泛科學.

把望遠鏡搬到格陵蘭?!觀測黑洞的瘋狂天文學家

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

  • 採訪編輯|歐柏昇 美術編輯|林洵安

為什麼建造格陵蘭望遠鏡

中研院天文及天文物理研究所主導的「格陵蘭望遠鏡」(GLT),在 2017 年底開光,並在 2018 年成功與夏威夷的次毫米波陣列 (SMA)、智利的阿塔卡瑪毫米波次毫米波陣列 (ALMA) 連線觀測。利用特長基線干涉技術,三組大型望遠鏡形成接近地球那麼大的大三角形,相當於一個超大望遠鏡,有望拍攝到人類史上第一張黑洞的照片。

在格陵蘭建造望遠鏡,除了靠天吃飯,也需要有經驗的天文工程團隊。 圖片來源|格陵蘭望遠鏡網站

天文學家的極地生活

在格陵蘭的生活是怎麼樣呢?格陵蘭望遠鏡計畫執行負責人、中研院研究員陳明堂說,冬天很麻煩,要穿厚重的衣服,一回到住處就不會想再出門了。格陵蘭的夏天是永晝、冬天是永夜,永夜的時候「會覺得怎麼睡都睡不飽」。

一般人想不到的是,格陵蘭的夏天有個很擾人的東西,那就是極地的大蚊子。穿著牛仔褲都會被蚊子叮咬,夏天工作必須戴網狀的帽子防蚊。使用臺灣帶去的電蚊拍,聞起來還會有 BBQ 的味道。

格陵蘭望遠鏡所在的圖勒空軍基地,設備還不錯,有福利社、餐廳、交誼中心、健身房。不過生活單調,每天閒暇就是與當地軍人、科學家串門子;因紐特人並不住在圖勒基地附近,平時不會遇見。

每年有三天的時間,圖勒基地會舉辦雪橇比賽,在結冰的海面上,比賽狗拉雪橇。這時因紐特人就會來到基地,順道帶一些土產來販賣。 資料來源|「穹頂天眼—從格陵蘭看黑洞」紀錄片

人類即將看見黑洞

「黑洞影像,我覺得遲早會被拍到,事件視界遲早會被證實。」陳明堂說,格陵蘭望遠鏡的主要觀測目標,是 M87 星系中央的超大質量黑洞。黑洞本身是「黑」的,事實上看不到,但是我們可以看到它的陰影。陰影的亮光,來自於黑洞周圍的吸積盤

  • 黑洞模擬影像:因為大黑洞在中間,光線會轉彎,造成左側比右側更亮。中間黑色部分是黑洞的「陰影」,就是天文學家試圖拍攝的影像。資料來源|Hotaka Shiokawa

從地球看過去,黑洞實在太小,解析度必須達到幾十個「微角秒」,所有光學望遠鏡都無法達到,只能仰賴特長基線干涉儀

以現在的技術而言,有機會看到的黑洞只有兩個:銀河系中央M87銀河系中央黑洞位在南方,而格陵蘭望遠鏡是在北方,觀測目標自然就是 M87 了。

陳明堂解釋,M87 黑洞與銀河系中央黑洞,特質其實不太一樣。銀河系中央黑洞離我們比較近,較容易看到,但是 M87 黑洞其實是銀河系黑洞的 1000 倍重。

左圖為電腦模擬 M87 黑洞陰影,右圖是次毫米波特長基線干涉儀在格陵蘭望遠鏡加入後,在較高頻段 (230GHz) 可望取得的 M87 黑洞陰影。影像解析度為 40 微角秒。
資料來源|中研院天文所 VLBI / GLT 團隊

為什麼科學家想看見黑洞?

晚上一個人在荒野,你會想要點火、拿手電筒去照,看有什麼東西。好奇和不安全感,有時候是一體兩面。

陳明堂說明,看星星固然浪漫,但是科學家更關心的是「地球和太陽系的關係」、「地球是怎麼來的」這些問題。求知的過程中,得到了答案,會讓人感到安心。好比說我們知道月球、火星不會突然爆炸,而令人安心。最終,是想了解人和自然界的關係。

「黑洞、外星人、人類起源跟未來,都是大科學。」陳明堂說,看見黑洞是驗證人類的理性推理。空間裡面為什麼可以出現一個大洞,是不是有異度空間,很難理解。知道黑洞存在,可證明我們用的方法是對的,可用同樣的理論探究其他事情。

人類要真正能利用黑洞,技術上還很遙遠。陳明堂表示,未來如果人類開始製造宇宙船艦,太陽能恐怕不夠,需要更巨大的能源,恐怕就要利用黑洞。黑洞是很有效率的發電機,假如有個小黑洞繞著地球走,只要丟一兩顆石頭進去,就可以產生大量的能源,不必再燒石油、用太陽能。

先不管這些科幻的想法是否能實現,一群勇於挑戰的天文學家,已經腳踏實地,踏入了酷寒的格陵蘭,建置望遠鏡探究神祕的黑洞。

把望遠鏡搬去格陵蘭?太瘋狂了!

故事要回到大約十年前(2009 年),美國國科會將不再使用的 ALMA 原型機釋出,公開徵求科學家的提案。中研院和哈佛合作「觀測黑洞」的提案獲得接受,順利取得了這台望遠鏡。

陳明堂說明,想要用望遠鏡看到黑洞,需要極佳的解析度,因此技術門檻很高。第一,必須要有將近地球那麼大的望遠鏡。第二,望遠鏡接收的頻率,必須是頻率很高的電波。而高頻率的毫米波次毫米波天文儀器,直到過去十幾年,技術才成熟。

問題來了,由於望遠鏡要接收的電波頻率很高,必須擺在非常乾燥的高山上。就像我們觀星要去合歡山、大雪山,因為山上大氣透明度比較好,才能看得到流星雨。

天文科學的設備,很講求大氣透明度。

新的望遠鏡地點,必須距離夏威夷和智利原有的兩組望遠鏡夠遠,且在乾燥的高山,又要考慮交通、基礎設施,於是地點的選擇相當困難。陳明堂說,他們曾經考慮過紐西蘭,但是紐西蘭沒有符合條件的高山;他們曾經考慮過阿拉斯加,然而阿拉斯加沒有可用的基礎設施。

終於,找到一個瘋狂的地點──格陵蘭。陳明堂說,他們原來根本不知道格陵蘭島上有什麼,同事去 Google 一查,才發現格陵蘭有個大氣觀測站,且是美國國家科學基金會在運作。他們試著向對方聯繫,結果順利談成合作。現在全球重要的毫米波次毫米波天文望遠鏡,地點分佈如下圖所示:

中研院已在夏威夷有 SMA 望遠鏡,又參與了智利 ALMA 望遠鏡的建造,掌握世界上很少數的次毫米波望遠鏡。在地球的另一角:格陵蘭,蓋一座新的望遠鏡,三台望遠鏡就形成一個大三角形,連線成將近地球那麼大的望遠鏡。如此一來,黑洞的觀測,中研院就站在全世界的主導地位。 資料來源|格陵蘭望遠鏡網站

陳明堂說,最初打算去格陵蘭,十個人有九個回應:「你們太瘋狂了!為什麼要花這種錢?又不會成功。」他說,「一開始,我們完全不知道格陵蘭長什麼樣子,不知道冷的時候是怎麼樣。一群在熱帶長大的人,到那麼寒冷的地方,衣服都不知道怎麼穿了。但是同樣的,之前 SMA 望遠鏡要搬去夏威夷的時候,我們也不知道那裡是什麼樣子。」

格陵蘭、夏威夷,這些位置給我們不安全感,但同時也有冒險患難的精神。

前進格陵蘭:拆解、修改、組裝

2011 年,格陵蘭望遠鏡的瘋狂計畫,終於展開了。研究團隊來到格陵蘭的峰頂站台基地 (Summit Camp),先擺放大氣透明度的測量儀器,驗證當地是很好的天文觀測地點。

在格陵蘭峰頂基地,觀測大氣透明度。資料來源|「穹頂天眼—從格陵蘭看黑洞」紀錄片

接著在 2012 年,中研院團隊來到新墨西哥州的小鎮。那裡是個印地安人居住的沙漠地區,擁有知名的甚大望遠鏡 (VLA),也就是電影《接觸未來》的場景。由於 ALMA 的原型機擺在那裡,中研院派一群人待了三個月,來拆卸原型機。人員每天從住處開車到天文台,單程就長達 70 公里。這是格陵蘭望遠鏡建造的第一步,就已拆得轟轟烈烈。

ALMA 原型機拆卸完成後,運送到維吉尼亞州的軍港。中研院的團隊在這裡待了半年,試組裝望遠鏡。因為格陵蘭的物資、人力都有很大的限制,甚至如果少了一顆特殊的螺絲,可能要等好幾個禮拜才能取得。於是,在零件運往格陵蘭之前,得在美國本土先試組裝大型物件,確定沒有差錯。

2016 年夏天,望遠鏡搭乘一年只開一次的船班,運送到了格陵蘭的圖勒空軍基地。來到格陵蘭冰天雪地的現場,發現不少未曾被注意過的問題。例如,一般望遠鏡放置的山上,不會常年結冰,望遠鏡天線即使部分結冰,仍然會融掉。

但是格陵蘭情況不同,望遠鏡只要結冰就很麻煩了,必須加裝除冰系統。

陳明堂解釋,除冰系統的原理,是不讓外來水分黏著到天線的碟面上。並不需要將碟面溫度維持在零度以上,只要讓它比周圍環境高一度左右,這樣水分就不會附著而結冰。

另外,原來的望遠鏡結構是開放式的,許多儀器放在室外。然而在格陵蘭,儀器不能隨意放在室外。研究團隊花了一些功夫,才找到合適的夥伴──包含中科院的航空研究所、中鋼,重新設計望遠鏡基座,改裝支撐架構,並增建兩個機房。

2017 年 7 月 24 日,格陵蘭望遠鏡組裝完成,研究與工程團隊合影。資料來源|格陵蘭望遠鏡網站

捕捉極地的天光

2017 年底,格陵蘭望遠鏡終於開光。 2018 年 1 月,格陵蘭望遠鏡參加了全世界的特長基線觀測預演。出乎眾人的意料,格陵蘭望遠鏡竟然與智利的 ALMA 連上線了!

一般望遠鏡組裝完成後,需要花費大量功夫調校,很難立刻成功觀測,更不用說是仰賴高技術的特長基線觀測。原先大家根本不相信,才剛組裝好的格陵蘭望遠鏡能夠立刻與 SMA、ALMA 連線,進行特長基線的觀測。接著,在 2018 年 4 月份,格陵蘭望遠鏡參加正式的觀測,取得數據,並且一步步調適各種參數。

陳明堂笑著說:「本來說我們 crazy 的人,現在都說我們好厲害!」攝影|張語辰

陳明堂解釋,特長基線的觀測是很複雜的過程。拿到資料以後,要先把所有台站的磁碟,送到相關處理器中心(具有專門用途的超級電腦),接著要做校正、成像。而後須確認影像是真是假,是否有鬼影子在裡面,才可能開始談科學。特別是要看黑洞陰影,這是前所未見的影像,大家會更加小心,反覆檢查哪邊可能出錯。

特長基線干涉陣列的工作流程。 資料來源|ALMA (ESO/NAOJ/NRAO), J.Pinto & N.Lira. 圖說重製|林洵安

格陵蘭望遠鏡的下一步計畫,是將望遠鏡從圖勒搬到峰頂站台基地圖勒接近海平面,由於大氣透明度的限制,只能做某些頻段的觀測,無法達到很好的解析度。

雖然在圖勒應可看到黑洞陰影,但是如果要取得品質夠好的影像,仍需移到非常適合次毫米波段觀測的峰頂。不過,研究團隊尚在尋找經費、人力,希望最快能在 2021 年到達峰頂,讓臺灣登上觀測黑洞的更高位置。

延伸閱讀

本文轉載自中央研究院研之有物,原文為把望遠鏡搬到格陵蘭?!觀測黑洞的瘋狂天文學家,泛科學為宣傳推廣執行單位


泛知識節倒數中!3/30、3/31隆重登場!

知識能不能當飯吃?當然!但要做得好吃、容易消化,還要讓人收穫滿滿,那可真是門學問。

泛知識節裡,我們要和你分享「科學可以怎麼學?」「科普書如何鍊成?」、「知識型Youtuber們的辛酸血淚史」、「有趣的展覽如何策劃?」還有「官方科普如何把研究說得有趣?」

想知道這些獨家秘辛,就快來:http://bit.ly/2Hm3MRv

想了解更多可以去官網看看喔:https://panfest.panmedia.asia/


泛科學院精選線上課程:爸媽需要搞懂的 14 堂大腦教養課(預購)

老是覺得小孩不乖?各位爸媽別煩惱,一起跟著資深心理師學習「教養心理學」,了解孩子的心理狀態和發展需求,讓親子之間溝通更順暢、關係更親密!

The post 把望遠鏡搬到格陵蘭?!觀測黑洞的瘋狂天文學家 appeared first on PanSci 泛科學.

一個頭兩種痛?那些年我們頭很痛

頭痛頭暈是幾乎每個人都曾經歷過的問題,發作起來真的讓人很不舒服。以最常見的一種頭痛類型「張力型頭痛」來說,在一些研究中指出,一年的盛行率甚至可以高達 8 成!也就是說,全台灣一年可能有超過 2000 萬人都曾發生過頭痛的問題,而且這個問題還有逐年上升的趨勢。在研究中也發現,女性朋友發生頭痛的機率( 88% )比起男性( 69% )要高出許多。

頭痛在多數的狀況下,是不會有大問題的。但在一些少數的狀況下,頭痛可能與中風、腦膜炎、腫瘤、顱內動脈瘤…等可能致死的疾病有關,所以在媒體報導中,你常會看見一些像是「頭痛勿輕忽, XX 歲年輕人頭痛後竟死亡」這類的標題。

大家看了這類的新聞可能會很緊張,但這類問題畢竟是少數,而且通常會伴隨特殊的症狀。今天團隊醫師將藉由這篇文章,完整讓你了解常見的頭痛原因有哪些?什麼狀況下可以嘗試自我緩解?什麼時候應該考慮就醫?甚至是應該立刻就醫?以後自己或身邊的人發生類似的狀況,就有個判斷的依據囉!

但如果你是因為文案寫不出來而頭痛,就不在這次討論範圍內囉。圖/pixabay

頭痛原因有哪些?有什麼症狀表現?

要了解頭痛,我們得先了解痛覺是怎麼產生的。一般來說,當棒子意外擊中頭部時,人體皮膚表層的疼痛接收器,就會收到被敲打的訊息,經過許多神經細胞的傳遞,最後將訊息傳至大腦感覺皮質,就會產生疼痛的感覺。但頭痛跟這種棒子敲到頭的狀況不太一樣,事實上可能有更複雜的機制,至今科學研究仍沒辦法完整解釋。

除了被棒子被敲到這樣的頭痛以外,頭痛基本上分為兩大類。一種是找不到特殊疾病所引起的頭痛,我們稱為原發性頭痛 (primary headache)。另一種是因為明確的其他疾病,所導致的頭痛,我們稱之為次發性頭痛 (secondary headache)。

目前我們還找不到明確的機制,可以完整解釋原發性頭痛是如何產生的,但有部分研究推測,原發性頭痛可能與頭頸部的肌肉酸痛腦內血管或神經細胞出現異常有關。

頭痛發作的原因有很多,大部分不是由其他疾病所導致的,這類頭痛醫學上通稱為原發性頭痛 (primary headache)。根據頭痛表現及發作位置的不同,可分為張力性頭痛、偏頭痛、叢發性頭痛三大類型:

  1. 張力性頭痛:為最常見的頭痛類型。症狀表現比較輕微,患者的頭部兩側常有像被繃帶緊緊綑綁的疼痛感。活動身體時,症狀通常不會加劇
  2. 偏頭痛:7 成的偏頭痛患者會感覺頭部單側鈍鈍的疼痛 7 ,常因為活動頭部、強烈光線及聲響而使頭痛加劇。一般會伴隨噁心嘔吐、畏光、視覺異常等症狀。
  3. 叢發性頭痛:急劇的疼痛一開始會從眼眶或太陽穴的位置發作,接著再轉移到頭部一側。該頭痛程度較前二者嚴重,沒辦法靠休息來緩解,通常會伴隨臉色蒼白、臉部盜汗、鼻塞或眼睛流淚等症狀。

此外,如果是由中風腦膜炎顱內動脈瘤一氧化碳中毒等疾病引起的頭痛症狀,我們稱之為次發性頭痛 (secondary headache)。這類型的頭痛不是單純緩解症狀就行了,若不及時處理疾病病兆,可能會出現危及生命的併發症。

圖/Medpartner 提供

看到這裡,你也許會擔心自己的頭痛,會不會是可能產生致命風險的次發性頭痛。不過別太擔心,因為大部分的頭痛屬於症狀較輕微的原發性頭痛,通常可以用以下介紹的多種方式加以緩解。如果真的很擔心是次發性頭痛,在文章末段我們有整理了注意事項,可以自行比對。

頭痛有什麼緩解方法?可以吃藥解決嗎?

上述三種原發性頭痛類型當中,張力性頭痛是最常見的一種,可在長時間內反覆發作,嚴重打亂日常生活的節奏。張力性頭痛可能由肌肉酸痛腦內血管及神經細胞異常,以及長期壓力所引起的。不過我們可以依照各個不同可能的誘發原因,來做出相對應的緩解方法。

【肌肉緊繃酸痛】

長期姿勢不良,或頭頸部同一姿勢維持過久,這些情況可能會導致肌肉容易緊繃及酸痛,進而引發頭痛症狀。可藉由調整姿勢、按摩肌肉、熱敷的方式加以緩解。

  1. 調整姿勢:身體處於坐姿的狀態下,應避免頭部過度前傾(不要當低頭族)彎腰駝背,以及長時間維持同一個姿勢,活動一下頭部及雙肩來遠離肌肉僵硬及疼痛的問題。
  2. 按摩肌肉:用不會產生疼痛的力道來按摩頭部後側頸部肩部來紓解緊繃的肌肉。
  3. 熱敷:利用瀝乾後的熱毛巾來熱敷,或按壓肌肉痠痛的部位。

【腦內血管及神經細胞異常】

攝取過量的咖啡因及酒精會使腦內血管及神經細胞出現異常,可能會讓大腦對頭部的感覺變得更敏感、微小的痛覺被放大,進而引發了頭痛的症狀。

  1. 減少咖啡因的飲用:少量的咖啡因可以使血管收縮以達到止痛的效果,但飲用過量咖啡因(每天超過 2 杯咖啡)的話9 ,容易產生咖啡因戒斷的症狀,其中包括了頭痛、容易疲倦、精神難以集中等等。
  2. 遠離酒精飲料:酒精可能會影響腦內神經傳導的正常運作,進而引發頭痛、失眠、噁心嘔吐等症狀。

【長期壓力】

長期壓力可能引發頭痛外,還會增加罹患胃食道逆流胃潰瘍的機會。建議可以透過冥想、心理諮商或適時放假休息等方式,以舒緩生活所帶來的壓力,守護自己的身心健康。

在藥局購買止痛藥該注意的事

除了上述提到的緩解方法,在一般藥局購買止痛藥也是緩解頭痛的方法之一。

選擇止痛藥的第一步驟是先查看藥物所含的成分,頭痛患者可以先選擇不含咖啡因成份且副作用相對較少的乙醯胺酚( acetaminophen ,常見商品名:普拿疼。),除非醫師或藥師有特別建議可嘗試其他種類或複方的止痛藥3

此外每一種止痛藥的成分在劑量上有所不同,購買這類成藥時請務必向藥師確認藥物有什麼副作用?符不符合自己當前的症狀?服藥時需遵循藥盒上的指示來用藥,不要因症狀尚未改善而擅自增加藥物劑量,這樣不只容易產生藥物的副作用,而且可能對肝、腎功能造成負面影響,反而危害自己的健康哦!

如果是一般原發性頭痛,依上述方式緩解頭痛,照理說是不用去看醫生的。但相反的,頭痛伴隨某些症狀時,是必須特別注意的,萬一不小心耽誤的話,可能會出現嚴重的併發症。為了防範未然,接下來我們要教你如何分辨什麼症狀可考慮就醫檢查,以及什麼症狀需要立即就醫

每一種止痛藥的成分在劑量上有所不同,購買這類成藥時請務必向藥師確認藥物有什麼副作用?圖/pixabay

頭痛什麼時候要看醫生? 

較輕微的頭痛,大部分可以透過改善生活習慣,或服用成藥的方式來緩解。但如果出現以下症狀時,可考慮就醫,讓醫師評估後,進行適合的檢查:

  • 頭痛加劇難以緩解
  • 持續發高燒(體溫超過攝氏 38 度,需評估病毒或細菌感染的風險)
  • 耳鳴(需要評估是否因為過敏或鼻竇炎所導致)
  • 視覺異常變化(可能是腫瘤、偏頭痛或青光眼等疾病造成)

要特別提醒的是,需要開立哪些檢查,醫師會針對你的症狀以及理學檢查結果,進行綜合評估。不是每個人都需要腦部斷層或核磁共振。在不需要這些檢查時,硬要做檢查,不只是醫療資源的浪費,也同時讓自己暴露於過多的放射線風險中。

但有些頭痛可能會產生嚴重併發症,甚至是致命的,這種狀況下就不可不慎。某些疾病如中風、急性腦膜炎、顱內動脈瘤,都可能出現頭痛的症狀,但同時也常併發其他症狀,因此我們必須學會辨識這些頭痛以外的症狀特色,才能避免嚴重的風險。當出現以下疾病症狀時,患者就有必要立即就醫:

  • 中風:臉部表情不對稱(微笑時嘴角一側較低,嘴歪)、單側手臂無法舉起、說話突然變得不清不楚
  • 顱內動脈瘤破裂:劇烈頭痛、噁心嘔吐、頸部僵硬、視力模糊、意識不清
  • 急性腦膜炎:初期可能會出現頭痛、頸部僵硬發燒的症狀
  • 癲癇發作:四肢不由自主抽動、意識狀態改變

圖/Medpartner 提供

幾乎每個人一生當中,都會經歷過頭痛所帶來的困擾。頭痛如果不去設法緩解,單靠意志力忍耐,其實是沒有必要的。因此,透過改善生活習慣、保持身心愉快,在真的需要時正確使用藥物等方式來緩解頭痛,可以讓頭痛這個問題對生活的影響降到最低。也別忘了牢記上面幾個必須「立刻就醫」的症狀,也許在某一天,會幫助到自己,或者是救了身邊的人一命也說不定。

參考資料

  1. Mayo clinic: Tension headache
  2. Medscape: Tension headache
  3. Uptodate: Patient education: Headache treatment in adults (Beyond the Basics)
  4. Uptodate: Tension-type headache in adults: Pathophysiology, clinical features, and diagnosis
  5. Uptodate: Tension-type headache in adults: Acute treatment
  6. Uptodate: Tension-type headache in adults: Preventive treatment
  7. Uptodate: Characteristics of common headache syndromes
  8. Gary D. Carr. Alcoholism: A Modern Look at an Ancient Illness. Primary care : clinics in office practice. Volume 38, Issue 1, March 2011, Pages 9-21.
  9. Bertil B. Fredholm, Karl Bättig et al. Actions of Caffeine in the Brain with Special Reference to Factors That Contribute to Its Widespread Use. Pharmacological Reviews March 1999, 51 (1) 83-133
 


泛科學院精選線上課程:爸媽需要搞懂的 14 堂大腦教養課(預購)

老是覺得小孩不乖?各位爸媽別煩惱,一起跟著資深心理師學習「教養心理學」,了解孩子的心理狀態和發展需求,讓親子之間溝通更順暢、關係更親密!

The post 一個頭兩種痛?那些年我們頭很痛 appeared first on PanSci 泛科學.

牛牛不過吃個草,也可以衝康到微生物世界?

陳俊堯
慈濟大學生命科學系 助理教授

 

 

除了牛,微生物也吃草!?

牛得吃草才能活。牛是動物,草是植物,但是動物和植物之間的事,居然搞到微生物世界都發生了不得了的動盪。

如果你是熟知微生物世界新聞的人,應該可以猜到後面的故事了。牛要吃草,吃下去的草裡有大量纖維素為主的植物多醣,影響腸子裡的細菌組成。細菌用了這些多醣來發酵,其中古菌們啃了有機物後產生甲烷,甲烷組成屁被牛排出,大氣裡甲烷濃度升高。甲烷是溫室氣體,人吃的牛越多,大氣裡甲烷越高,地球變熱,又把人類往滅亡的方向推進了一點。好可怕。

牛的腸內菌種會將醣類轉換成甲烷,經由牛屁釋放到空氣中。圖/pixabay

上面講的事的確沒錯。但我要講的不是這個你已經聽過的故事。

草食性動物吃草,直接影響被吃植物的生存和能量分配,吃得認真點還可能會改變當地的植物組成。如果一棵植物被啃掉一半的葉子,一定會設法趕快從土壤裡把氮源吸起來讓自己造新葉來補光合作用的不足。不過植物認真吸走氮源,也就表示土壤裡的微生物能用的氮源也變少。

植物生長難免會有枯枝落葉,這些東西在地表逐漸分解,都變成供應土壤微生物的養份。2015 年在美國懷俄明州的研究就發現,少了草食動物啃食的草地土壤裡,細菌真菌的數量比較多,而且分解植物纖維素木質素的基因、呼吸和分解含氮化合物的基因都比較多(Peschel et al. 2015)。好像動物多吃兩口,就會讓微生物們縮衣節食了。

植物是土壤有機物的主要來源。圖/作者提供

2017 年的一篇研究也發現,動物的啃食不只傷到植物,躺在土裡的微生物也中槍。在研究的這個區域裡數量最多的細菌是 Actinobacteria 門的菌種,而真菌的第一名則是 Ascomyces。在有動物啃食的區域,Actinomycetes 門細菌的數量變少,導致多樣性增高,但是 Ascomyces 門真菌的數量反而增加,讓多樣性降低。這個因為啃食造成的數量變化還伴隨著較低的土壤含碳量、微生物分解纖維素木質素的基因變少、呼吸作用和分解含氮分子的基因也變少。

似乎在草食動物來搶食物的後果是微生物退讓,利用養份的狀況都變差了。

另一個在奧地利森林裡做的研究也看到類似的狀況。在有牛隻啃食植物的地方,不但菌相改變,還發現原本可以吸存甲烷的森林土壤,因為菌相改而變成會向外排放溫室氣體甲烷(Mutschlechner et al. 2018)。就算不放屁,牛也一樣可以藉別人的手來衝康地球。

先別管微生物,你有沒有想過毛毛蟲?

但是你一定沒想到下面這種影響,來看看這篇最近出現的有趣報告。這個研究想看動物啃食的影響,比較了開放給草食動物覓食的區域,以及用網架隔離動物進不去的區域。要比較什麼東西呢?他們找了這個地區常見的蛾類幼蟲 (spring webworm caterpillars, Ocnogyna loewii),要來比較在這些草地上毛蟲的腸道菌相。

實驗結果發現這菌相還真有不同,毛蟲在小時候群居期的菌相還算接近,長大一點獨自行動後,兩組的菌相開始變得不一樣。難道說,作者認為牛隻在草地裡走來走去吃草,會嚇得毛毛蟲拉肚子而改變腸道菌相?

蛾類 Ocnogyna loewii  的幼蟲。照片來自 Ziva & Amir,CC BY-NC-ND 2.0 授權。

你猜錯了,不是。毛毛蟲沒辦法「看見」一隻牛走來走去。但是,走來走去的牛可以吃光某些好吃的植物,改變當地的植物組成。而當它們羽化成蛾時,會隨機在植物上產卵,下一代就以那植物為食。科學家們發現兩區草地上的植物組成不一樣,推測是因為植物改變,進到毛蟲肚子裡的食物也改變,在被採回實驗室分析後就得到不一樣的菌相。

牛啊牛啊,你吃個草就天下大亂了,那人的罪孽該怎麼辦呢?

吃草的牛會影響土壤裡及植物上的菌相。照片來自 DominikSchraudolf,CC0 授權。

參考文獻

  1. Berman TS, Laviad-Shitrit S, Lalzar M, Halpern M, Inbar M. Cascading effects on bacterial communities: cattle grazing causes a shift in the microbiome of a herbivorous caterpillar. ISME J. 2018 Aug;12(8):1952-1963.
  2. Eldridge DJ, Delgado-Baquerizo M, Travers SK, Val J, Oliver I, Hamonts K, Singh BK. Competition drives the response of soil microbial diversity to increased grazing by vertebrate herbivores. Ecology. 2017 Jul;98(7):1922-1931.
  3. Mutschlechner M, Praeg N, Illmer P. The influence of cattle grazing on methane fluxes and engaged microbial communities in alpine forest soils. FEMS Microbiol Ecol. 2018 May 1;94(5). fiy019.
  4. Peschel AR, Zak DR, Cline LC, Freedman Z. Elk, sagebrush, and saprotrophs: indirect top-down control on microbial community composition and function. Ecology. 2015 Sep;96(9):2383-93.

 

本文轉載自MiTalkzine,原文《老牛吃草引發的蝴蝶效應》

歡迎訂閱微雜誌MiTalkzine,加入 MiTalker 的行列,一起來認識這個星球上千萬種各式各樣的微生物吧!

訂閱連結:https://goo.gl/Qo59iG


泛科學院精選線上課程:科學思辨力

無論是自然環境或是社會體制,地球正在發生的改變難以預測是好是壞,但是我們可以確定,每個人都需要 科學思辨力 以迎接來得又快又猛的新時代🧠


泛科學院精選線上課程:爸媽需要搞懂的 14 堂大腦教養課(預購)

老是覺得小孩不乖?各位爸媽別煩惱,一起跟著資深心理師學習「教養心理學」,了解孩子的心理狀態和發展需求,讓親子之間溝通更順暢、關係更親密!

The post 牛牛不過吃個草,也可以衝康到微生物世界? appeared first on PanSci 泛科學.